Male patients with an extra sex chromosome or autosome are expected to present primary hypogonadism at puberty owing to meiotic germ-cell failure. Scarce information is available on trisomy 21, a frequent autosomal aneuploidy. Our objective was to assess whether trisomy 21 presents with pubertal-onset, germ-cell specific, primary hypogonadism in males, or whether the hypogonadism is established earlier and affects other testicular cell populations. We assessed the functional status of the pituitary-testicular axis, especially Sertoli cell function, in 117 boys with trisomy 21 (ages: 2months-20year). To compare with an adequate control population, we established reference levels for serum anti-Müllerian hormone (AMH) in 421 normal males, from birth to adulthood, using a recently developed ultrasensitive assay. In trisomy 21, AMH was lower than normal, indicating Sertoli cell dysfunction, from early infancy, independently of the existence of cryptorchidism. The overall prevalence rate of AMH below the 3rd percentile was 64.3% in infants with trisomy 21. Follicle-stimulating hormone was elevated in patients <6months and after pubertal onset. Testosterone was within the normal range, but luteinizing hormone was elevated in most patients <6months and after pubertal onset, indicating a mild Leydig cell dysfunction. We conclude that in trisomy 21, primary hypogonadism involves a combined dysfunction of Sertoli and Leydig cells, which can be observed independently of cryptorchidism soon after birth, thus prompting the search for new hypotheses to explain the pathophysiology of gonadal dysfunction in autosomal trisomy.
In the prepubertal male, Sertoli cells are the most active testicular cell population. Without stimulation tests, prepubertal hypogonadism can only be evidenced if Sertoli cell function is assessed. Anti-müllerian hormone (AMH) is a distinctive marker of the prepubertal Sertoli cell. Serum AMH is high from fetal life until puberty. In postnatal life, AMH testicular production is stimulated by FSH and potently inhibited by androgens. In anorchid patients, AMH is undetectable. In prepubertal males with fetal- or childhood-onset primary or central hypogonadism affecting the whole gonad, serum AMH is low. Conversely, when hypogonadism only affects Leydig cells (i.e., LH/human chorionic gonadotrophin receptor or steroidogenic enzyme defects), serum AMH is normal/high. AMH is also normal/high in patients with androgen insensitivity. In patients of pubertal age with central hypogonadism, AMH is low for Tanner stage – reflecting lack of FSH stimulus, – but high for age – reflecting lack of testosterone inhibitory effect. FSH treatment results in serum AMH rise, whereas human chorionic gonadotrophin treatment increases testosterone levels which inhibit AMH production. In conclusion, AMH determination is helpful in assessing gonadal function, without need for stimulation tests, and orientates the aetiological diagnosis of paediatric male hypogonadism. Furthermore, serum AMH is an excellent marker of FSH and androgen action in the testis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.