Morphology of soft materials, including those of natural systems has great influence in controlling their surface functionalities and responses to external stimuli. Surface morphological features of natural soft systems are produced through controlled cell growth and tissue growth. Artificial systems capable of emulating the morphology-dependent physicochemical responses of natural soft substrates can be prepared through various methods such as surface oxidation, thermal stress, compressive stress, etc. Wrinkling is an important morphological irregularity on soft substrates which can be leveraged in this direction. Wrinkling in artificial soft systems can be achieved through several experimental strategies such as compressive stress, thermal stress, surface oxidation, etc. The tunable, reversible and responsive nature of wrinkled soft substrates make them a potential tool for numerous applications in electronics, optics, adhesives, etc. In this review, have briefly summarized and commented on recent developments in different types of wrinkled soft substrates, their preparation, and emergent applications.
We have developed a simple and effective method to prepare stable wettability gradients on an elastomeric soft substrate, polydimethylsiloxane (PDMS). In our method, a partially cured PDMS film composed of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.