In this investigation, a data-driven turbulence closure framework is introduced and deployed for the sub-grid modelling of Kraichnan turbulence. The novelty of the proposed method lies in the fact that snapshots from high-fidelity numerical data are used to inform artificial neural networks for predicting the turbulence source term through localized gridresolved information. In particular, our proposed methodology successfully establishes a map between inputs given by stencils of the vorticity and the streamfunction along with information from two well-known eddy-viscosity kernels. Through this we predict the sub-grid vorticity forcing in a temporally and spatially dynamic fashion. Our study is both a-priori and a-posteriori in nature. In the former, we present an extensive hyper-parameter optimization analysis in addition to learning quantification through probability density function based validation of sub-grid predictions. In the latter, we analyse the performance of our framework for flow evolution in a classical decaying twodimensional turbulence test case in the presence of errors related to temporal and spatial discretization. Statistical assessments in the form of angle-averaged kinetic energy spectra demonstrate the promise of the proposed methodology for sub-grid quantity inference. In addition, it is also observed that some measure of a-posteriori error must be considered during optimal model selection for greater accuracy. The results in this article thus represent a promising development in the formalization of a framework for generation of heuristic-free turbulence closures from data.
We present a single-layer feed-forward artificial neural network architecture trained through a supervised learning approach for the deconvolution of flow variables from their coarse-grained computations such as those encountered in large eddy simulations. We stress that the deconvolution procedure proposed in this investigation is blind, i.e. the deconvolved field is computed without any pre-existing information about the filtering procedure or kernel. This may be conceptually contrasted to the celebrated approximate deconvolution approaches where a filter shape is predefined for an iterative deconvolution process. We demonstrate that the proposed blind deconvolution network performs exceptionally well in the a-priori testing of two-dimensional Kraichnan, threedimensional Kolmogorov and compressible stratified turbulence test cases and shows promise in forming the backbone of a physics-augmented data-driven closure for the Navier-Stokes equations.
Many reduced order models are neither robust with respect to the parameter changes nor cost-effective enough for handling the nonlinear dependence of complex dynamical systems. In this study, we put forth a robust machine learning framework for projection based reduced order modeling of such nonlinear and nonstationary systems. As a demonstration, we focus on a nonlinear advection-diffusion system given by the viscous Burgers equation, which is a prototype setting of more realistic fluid dynamics applications with the same quadratic nonlinearity. In our proposed methodology the effects of truncated modes are modeled using a singe layer feed-forward neural network architecture. The neural network architecture is trained by utilizing both the Bayesian regularization and extreme learning machine approaches, where the latter one is found to be computationally more efficient. A particular effort is devoted to the selection of basis functions considering the proper orthogonal decomposition and Fourier bases. It is shown that the proposed models yield significant improvements in the accuracy over the standard Galerkin projection models with a negligibly small computational overhead and provide reliable predictions with respect to the parameter changes.
A common strategy for the dimensionality reduction of nonlinear partial differential equations (PDEs) relies on the use of the proper orthogonal decomposition (POD) to identify a reduced subspace and the Galerkin projection for evolving dynamics in this reduced space. However, advection-dominated PDEs are represented poorly by this methodology since the process of truncation discards important interactions between higher-order modes during time evolution. In this study, we demonstrate that encoding using convolutional autoencoders (CAEs) followed by a reduced-space time evolution by recurrent neural networks overcomes this limitation effectively. We demonstrate that a truncated system of only two latent space dimensions can reproduce a sharp advecting shock profile for the viscous Burgers equation with very low viscosities, and a six-dimensional latent space can recreate the evolution of the inviscid shallow water equations. Additionally, the proposed framework is extended to a parametric reduced-order model by directly embedding parametric information into the latent space to detect trends in system evolution. Our results show that these advection-dominated systems are more amenable to low-dimensional encoding and time evolution by a CAE and recurrent neural network combination than the POD-Galerkin technique.
This paper proposes a supervised machine learning framework for the non-intrusive model order reduction of unsteady fluid flows to provide accurate predictions of non-stationary state variables when the control parameter values vary. Our approach utilizes a training process from full-order scale direct numerical simulation data projected on proper orthogonal decomposition (POD) modes to achieve an artificial neural network (ANN) model with reduced memory requirements. This data-driven ANN framework allows for a nonlinear time evolution of the modal coefficients without performing a Galerkin projection. Our POD-ANN framework can thus be considered an equation-free approach for latent space dynamics evolution of nonlinear transient systems and can be applied to a wide range of physical and engineering applications. Within this framework we introduce two architectures, namely sequential network (SN) and residual network (RN), to train the trajectory of modal coefficients. We perform a systematic analysis of the performance of the proposed reduced order modeling approaches on prediction of a nonlinear wave-propagation problem governed by the viscous Burgers equation, a simplified prototype setting for transient flows. We find that the POD-ANN-RN yields stable and accurate results for test problems assessed both within inside and outside of the database range and performs significantly better than the standard intrusive Galerkin projection model. Our results show that the proposed framework provides a non-intrusive alternative to the evolution of transient physics in a POD basis spanned space, and can be used as a robust predictive model order reduction tool for nonlinear dynamical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.