The coexistence of closely related species is not easily understood on the basis of ecological theories. This study investigates the extent of coexistence of two congeneric species of Microcebus murinus (MUR) and M. ravelobensis (RAV) in northwestern Madagascar. Their presence and local relative population densities were determined by capturing and nocturnal transect counts and compared at 22 study sites in the Ankarafantsika National Park. All sites were characterized with regard to their altitude, access to surface water, and 19 structural vegetation characteristics. RAV and MUR were not equally distributed over this regional scale. RAV occurred in more sites and at higher maximum densities than MUR. The relative population densities of both species were significantly and negatively correlated with each other. Whereas the relative population densities of MUR increased with altitude and were highest in dry habitats far from surface water, the relative population densities of RAV generally decreased with altitude and were highest in low altitude habitats close to surface water. The results of the vegetation characteristics also reflect these general trends. The divergent pattern of local and regional coexistence of these two species is discussed and can be best explained either by the existence of a spatially heterogeneous competitive environment or by independent evolutionary pathways in different historic environments.
The factors that limit the distribution of the highly diverse lemur fauna of Madagascar are still debated. We visited an understudied region of eastern Madagascar, a lowland rainforest site (Sahafina, 29-230 m a.s.l.) close to the Mantadia National Park, in order to conduct a survey and collect further distributional data on mouse lemurs. We captured, measured, photographed, and sampled mouse lemurs from the Sahafina forest, performed standard phylogenetic methods based on three mitochondrial DNA genes, and conducted morphometric comparisons in order to clarify their phylogenetic position and taxonomic status. The mouse lemurs from the Sahafina forest could not be assigned to any of the known mouse lemur species and were highly divergent in all molecular analyses from all previously described species. Since they also differed morphometrically from their sister species and from their geographic neighbors, we propose species status and include a species description at the end. This study suggests that M. lehilahytsara may be the first highland specialist among all mouse lemurs. The distribution of the newly described mouse lemur is not fully known, but seems to be rather restricted and highly fragmented, which raises serious conservation concerns.
Habitat loss and fragmentation are major ecological forces threatening animal communities across the globe. These issues are especially true in Madagascar, where forest loss is ongoing. We examined the effects of forest fragmentation on the distribution and abundance of sympatric, endemic gray, and golden-brown mouse lemurs (Microcebus murinus and Microcebus ravelobensis), the endemic western tufttailed rat (Eliurus myoxinus), and the invasive black rat (Rattus rattus) in two regions in northwestern Madagascar. We used systematic capture procedures in 40 forest fragments and four continuous forest sites which differed in size, shape, and degree of isolation. With a trapping effort of 11,567 trap nights during two dry seasons (2017-2018), we captured 929 individuals (432 M. ravelobensis, 196 M. murinus, 116 E. myoxinus, and 185 R. rattus). We examined the influence of study region, forest type (fragment vs. continuous), forest size, forest shape, the proportion of 50-m forest edge and distance to continuous forest on the abundance and interaction of the four species. Responses to fragmentation differed strongly between species, but no interaction could be detected between the abundance of the different species. Thus competition within and between native and invasive species may not be regulating abundances in these regions. On the contrary, the abundance of M. ravelobensis and E. myoxinus differed significantly between study regions and was negatively affected by fragmentation. In contrast, there was no evidence of an impact of fragmentation on the abundance of M. murinus. Finally, the invasive R. rattus responded positively to the increasing distance to the continuous forest. In conclusion, the response of small Malagasy mammals to forest fragmentation varies largely between species, and fragmentation effects need to be examined at a species-specific level to fully understand their ecological dynamics and complexity. K E Y W O R D S abundance, edge effect, Eliurus, Forest fragmentation, Madagascar, Microcebus, Rattus
Reproduction is a fundamental trait in the life history of any species and contributes to species diversity and evolution. Here, we aim to review the barely known variation in reproductive patterns of the smallest-bodied primate radiation, the Malagasy mouse lemurs, focusing on twelve species of four phylogenetic clades. We present a new reproductive field dataset collected between May and November 1996-2016 for nine species (Microcebus murinus, M. myoxinus, M. ravelobensis, M. bongolavensis, M. danfossi, M. sambiranensis, M. margothmarshae, M. mamiratra, and M. lehilahytsara) and add published field information on three additional species. In the majority of species, the estrus of females was recorded in the period of long days (day length longer than 12 hr), whereas male testes size increased about one to three months prior to this. Reproductive schedules varied considerably between the four clades. Sympatric species-pairs of different clades differed in the timing of female and male reproduction, suggesting strong phylogenetic constraints. Populations of the same species in a different ecological setting varied in the onset of reproduction, suggesting substantial environmental plasticity. Warm temperatures and rainfall throughout the year may allow for less expressed reproductive seasonality. Our results suggest that an interplay between phylogenetic relatedness, ambient temperature (as a proxy for thermo regulatory constraints), and rainfall (as a proxy for food availability), may best explain this variation. Findings further point to a more complex control of mouse lemur reproduction than previously described and illuminate phylogenetic constraints and adaptive potentials in behavioral reaction norms of a species-rich primate radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.