This paper reports on the results of an independent evaluation of the techniques presented in the VLDB 2007 paper "Scalable Semantic Web Data Management Using Vertical Partitioning", authored by D. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach [1]. We revisit the proposed benchmark and examine both the data and query space coverage. The benchmark is extended to cover a larger portion of the query space in a canonical way. Repeatability of the experiments is assessed using the code base obtained from the authors. Inspired by the proposed vertically-partitioned storage solution for RDF data and the performance figures using a column-store, we conduct a complementary analysis of state-of-the-art RDF storage solutions. To this end, we employ MonetDB/SQL, a fully-functional open source column-store, and a well-known-for its performance-commercial row-store DBMS. We implement two relational RDF storage solutions-triple-store and vertically-partitionedin both systems. This allows us to expand the scope of [1] with the performance characterization along both dimensions-triple-store vs. vertically-partitioned and row-store vs. column-store-individually, before analyzing their combined effects. A detailed report of the experimental test-bed, as well as an in-depth analysis of the parameters involved, clarify the scope of the solution originally presented and position the results in a broader context by covering more systems.
Automatically recycling (intermediate) results is a grand challenge for state-of-the-art databases to improve both query response time and throughput. Tuples are loaded and streamed through a tuple-at-a-time processing pipeline avoiding materialization of intermediates as much as possible. This limits the opportunities for reuse of overlapping computations to DBA-defined materialized views and function/result cache tuning. In contrast, the operator-at-a-time execution paradigm produces fully materialized results in each step of the query plan. To avoid resource contention, these intermediates are evicted as soon as possible. In this paper we study an architecture that harvests the byproducts of the operator-at-a-time paradigm in a column store system using a lightweight mechanism, the recycler. The key challenge then becomes selection of the policies to admit intermediates to the resource pool, their retention period, and the eviction strategy when facing resource limitations. The proposed recycling architecture has been implemented in an open-source system. An experimental analysis against the TPC-H ad-hoc decision support benchmark and a complex, real-world application (SkyServer) demonstrates its effectiveness in terms of self-organizing behavior and its significant performance gains. The results indicate the potentials of recycling intermediates and charters a route for further development of database kernels.
Automatically recycling (intermediate) results is a grand challenge for state-of-the-art databases to improve both query response time and throughput. Tuples are loaded and streamed through a tuple-at-a-time processing pipeline avoiding materialization of intermediates as much as possible. This limits the opportunities for reuse of overlapping computations to DBA-defined materialized views and function/result cache tuning. In contrast, the operator-at-a-time execution paradigm produces fully materialized results in each step of the query plan. To avoid resource contention, these intermediates are evicted as soon as possible. In this paper we study an architecture that harvests the byproducts of the operator-at-a-time paradigm in a column store system using a lightweight mechanism, the recycler. The key challenge then becomes selection of the policies to admit intermediates to the resource pool, their retention period, and the eviction strategy when facing resource limitations. The proposed recycling architecture has been implemented in an open-source system. An experimental analysis against the TPC-H ad-hoc decision support benchmark and a complex, real-world application (SkyServer) demonstrates its effectiveness in terms of self-organizing behavior and its significant performance gains. The results indicate the potentials of recycling intermediates and charters a route for further development of database kernels.
Stream applications gained significant popularity over the last years that lead to the development of specialized stream engines. These systems are designed from scratch with a different philosophy than nowadays database engines in order to cope with the stream applications requirements. However, this means that they lack the power and sophisticated techniques of a full fledged database system that exploits techniques and algorithms accumulated over many years of database research.In this paper, we take the opposite route and design a stream engine directly on top of a database kernel. Incoming tuples are directly stored upon arrival in a new kind of system tables, called baskets. A continuous query can then be evaluated over its relevant baskets as a typical one-time query exploiting the power of the relational engine. Once a tuple has been seen by all relevant queries/operators, it is dropped from its basket. A basket can be the input to a single or multiple similar query plans. Furthermore, a query plan can be split into multiple parts each one with its own input/output baskets allowing for flexible load sharing query scheduling. Contrary to traditional stream engines, that process one tuple at a time, this model allows batch processing of tuples, e.g., query a basket only after x tuples arrive or after a time threshold has passed. Furthermore, we are not restricted to process tuples in the order they arrive. Instead, we can selectively pick tuples from a basket based on the query requirements exploiting a novel query component, the basket expressions.We investigate the opportunities and challenges that arise with such a direction and we show that it carries significant advantages. We propose a complete architecture, the DataCell, which we implemented on top of an open-source column-oriented DBMS. A detailed analysis and experimental evaluation of the core algorithms using both micro benchmarks and the standard Linear Road benchmark demonstrate the potential of this new approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.