A set of vertices S of a graph G is monophonically convex if every induced path joining two vertices of S is contained in S. The monophonic convex hull of S, S , is the smallest monophonically convex set containing S. A set S is monophonic convexly independent if v ∈ S−{v} for every v ∈ S. The monophonic rank of G is the size of the largest monophonic convexly independent set of G. We present a characterization of the monophonic convexly independent sets. Using this result, we show how to determine the monophonic rank of graph classes like bipartite, cactus, triangle-free, and line graphs in polynomial time. Furthermore, we show that this parameter can computed in polynomial time for 1-starlike graphs, i.e., for split graphs, and that its determination is NP-complete for k-starlike graphs for any fixed k ≥ 2, a subclass of chordal graphs. We also consider this problem on the graphs whose intersection graph of the maximal prime subgraphs is a tree.
A set of vertices $S$ of a graph $G$ is {\em monophonically convex} if every induced path joining two vertices of $S$ is contained in $S$. The {\em monophonic convex hull of $S$}, $\langle S \rangle$, is the smallest monophonically convex set containing $S$. A set $S$ is {\em monophonic convexly independent} if $v \not\in \langle S - \{v\} \rangle$ for every $v \in S$. The {\em monophonic rank} of $G$ is the size of the largest monophonic convexly independent set of $G$. We present a characterization of the monophonic convexly independent sets. Using this result, we show how to determine the monophonic rank of graph classes like bipartite, cactus, triangle-free, and line graphs in polynomial time. Furthermore, we show that this parameter can computed in polynomial time for $1$-starlike graphs, i.e., for split graphs, and that its determination is $\NP$-complete for $k$-starlike graphs for any fixed $k \ge 2$, a subclass of chordal graphs. We also consider this problem on the graphs whose intersection graph of the maximal prime subgraphs is a tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.