T-cell-based therapies represent a promising strategy for cancer treatment. In this context, cytokines are discussed as a bona fide instrument for fine-tuning T- cell biology. One promising candidate is the pleiotropic interleukin-21 (IL-21) with only little being known regarding its direct effects on human T-cells. Thus, we sought out to characterize the impact of IL-21 on T-cell metabolism, fitness, and differentiation. Culturing T-cells in presence of IL-21 elicited a metabolic skewing away from aerobic glycolysis towards fatty acid oxidation (FAO). These changes of the metabolic framework were paralleled by increased mitochondrial fitness and biogenesis. However, oxidative stress levels were not increased but rather decreased. Furthermore, elevated FAO and mitochondrial biomass together with enhanced antioxidative properties are linked to formation of longer lasting memory responses and less PD-1 expression. We similarly observed an IL-21-triggered induction of central memory-like T-cells and reduced levels of PD-1 on the cell surface. Taken together, IL-21 shifts T-cells towards an immunometabolic phenotype that has been associated with increased survivability and enhanced anti-tumor efficacy. In addition, our data reveals a novel interconnection between fatty acid metabolism and immune function regulated by IL 21.
Mesenchymal stromal cells (MSCs) possess numerous regenerative and immune modulating functions. Transplantation across histocompatibility barriers is feasible due to their hypoimmunogenicity. MSCs have emerged as promising tools for treating graft-versus-host disease following allogeneic stem cell transplantation. It is well established that their clinical efficacy is substantially attributed to fine-tuning of T-cell responses. At the same time, increasing evidence suggests that metabolic processes control T-cell function and fate. Here, we investigated the MSCs' impact on the metabolic framework of activated T-cells. In fact, MSCs led to mitigated mTOR signaling. This phenomenon was accompanied by a weaker glycolytic response (including glucose uptake, glycolytic rate, and upregulation of glycolytic machinery) toward T-cell activating stimuli. Notably, MSCs express indoleamine-2,3-dioxygenase (IDO), which mediates T-cell suppressive tryptophan catabolism. Our observations suggest that IDO-induced tryptophan depletion interferes with a tryptophan-sufficiency signal that promotes cellular mTOR activation. Despite an immediate suppression of T-cell responses, MSCs foster a metabolically quiescent T-cell phenotype characterized by reduced mTOR signaling and glycolysis, increased autophagy, and lower oxidative stress levels. In fact, those features have previously been shown to promote generation of long-lived memory cells and it remains to be elucidated how MSC-induced metabolic effects shape in vivo T-cell immunity. STEM CELLS 2016;34:516-521 SIGNIFICANCE STATEMENTMesenchymal stromal cells (MSCs) have emerged as a promising therapeutic option for a number of entities including Graft-versus-Host disease (GvHD) following stem cell transplantation. In GvHD the MSCs' beneficial effects can be attributed to their fine-tuning of T-cell responses. At the same time increasing evidence highlights that metabolic signaling governs T-cell function and fate. Here, we show for the first time how MSCs suppress T-cell activation by modulating their metabolism. However, several of the observed MSC-mediated metabolic effects are linked to memory formation and longevity in T-cells. Our findings could therefore represent an explanation why MSC-transfer in GvHD patients does not lead to an increased risk for disease relapse or infectious complications.
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2+-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term “subthreshold IKK activation”.This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.