Although each of the fundamental processes involved in excitation-contraction coupling in mammalian heart has been identified, many quantitative details remain unclear. The initial goal of our experiments was to measure both the transmembrane Ca2+ current, which triggers contraction, and the Ca2+ extrusion due to Na(+)-Ca2+ exchange in a single ventricular myocyte. An action potential waveform was used as the command for the voltage-clamp circuit, and the membrane potential, membrane current, [Ca2+]i, and contraction (unloaded cell shortening) were monitored simultaneously. Ca(2+)-dependent membrane current during an action potential consists of two components: (1) Ca2+ influx through L-type Ca2+ channels (ICa-L) during the plateau of the action potential and (2) a slow inward tail current that develops during repolarization negative to approximately -25 mV and continues during diastole. This slow inward tail current can be abolished completely by replacement of extracellular Na+ with Li+, suggesting that it is due to electrogenic Na(+)-Ca2+ exchange. In agreement with this, the net charge movement corresponding to the inward component of the Ca(2+)-dependent current (ICa-L) was approximately twice that during the slow inward tail current, a finding that is predicted by a scheme in which the Ca2+ that enters during ICa is extruded during diastole by a 3 Na(+)-1 Ca2+ electrogenic exchanger. Action potential duration is known to be a significant inotropic variable, but the quantitative relation between changes in Ca2+ current, action potential duration, and developed tension has not been described in a single myocyte. We used the action potential voltage-clamp technique on ventricular myocytes loaded with indo 1 or rhod 2, both Ca2+ indicators, to study the relation between action potential duration, ICa-L, and cell shortening (inotropic effect). A rapid change from a "short" to a "long" action potential command waveform resulted in an immediate decrease in peak ICa-L and a marked slowing of its decline (inactivation). Prolongation of the action potential also resulted in slowly developing increases in the magnitude of Ca2+ transients (145 +/- 2%) and unloaded cell shortening (4.0 +/- 0.4 to 7.6 +/- 0.4 microns). The time-dependent nature of these effects suggests that a change in Ca2+ content (loading) of the sarcoplasmic reticulum is responsible. Measurement of [Ca2+]i by use of rhod 2 showed that changes in the rate of rise of the [Ca2+]i transient (which in rat ventricle is due to the rate of Ca2+ release from the sarcoplasmic reticulum) were closely correlated with changes in the magnitude and the time course of ICa-L.(ABSTRACT TRUNCATED AT 400 WORDS)
One significant factor contributing to the heterogeneity of action potential waveforms in rat left ventricle is a differential distribution of a Ca+ independent transient outward K+ current, I(t). Regional differences in action potential duration have important implications for the gradient of repolarisation in rat left ventricle, for the genesis of the T wave of the electrocardiogram, and for both electrical and mechanical restitution (refractoriness).
Heart failure is the leading cause of mortality in patients with transfusional iron (Fe) overload in which myocardial iron uptake ensues via a transferrin-independent process. We examined the ability of L-type Ca2+ channel modifiers to alter Fe2+ uptake by isolated rat hearts and ventricular myocytes. Perfusion of rat hearts with 100 nmol/L 59Fe2+ and 5 mmol/L ascorbate resulted in specific 59Fe2+ uptake of 20.4+/-1.9 ng of Fe per gram dry wt. Abolishing myocardial electrical excitability with 20 mmol/L KCl reduced specific 59Fe2+ uptake by 60+/-7% (P<0.01), which suggested that a component of myocardial Fe2+ uptake depends on membrane voltage. Accordingly, 59Fe2+ uptake was inhibited by 10 micromol/L nifedipine (45+/-12%, P<0.02) and 100 micromol/L Cd2+ (86+/-3%; P<0. 001) while being augmented by 100 nmol/L Bay K 8644 (61+/-18%, P<0. 01) or 100 nmol/L isoproterenol (40+/-12%, P<0.05). By contrast, uptake of 100 nmol/L ferric iron (59Fe3+) was significantly lower (1. 4+/-0.3 ng Fe per gram dry wt; P<0.001) compared with divalent iron. These data suggest that a component of Fe2+ uptake into heart occurs via the L-type Ca2+ channel in myocytes. To investigate this further, the effects of Fe2+ on cardiac myocyte L-type Ca2+ currents were measured. In the absence of Ca2+, noninactivating nitrendipine-sensitive Fe2+ currents were recorded with 15 mmol/L [Fe2+]o. Low concentrations of Fe2+ enhanced Ca2+ current amplitude and slowed inactivation rates, which was consistent with Fe2+ entry into the cell, whereas higher Fe2+ levels caused dose-dependent decreases in peak current. Fe3+ had no effect on current amplitude or decay. Combined, our data suggest that myocardial Fe2+ uptake occurs via L-type Ca2+ channels and that blockade of these channels might be useful in the treatment of patients with excessive serum iron levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.