The primary limitation of IgG antibodies for radioimmunotherapy of solid tumors is their prolonged serum half-life, leading to dose-limiting bone marrow toxicity at doses providing inadequate radiation to the tumor. A humanized C(H)2 domain-deleted variant of the anti-TAG-72 antibody CC49 (HuCC49DeltaC(H)2) has faster blood clearance, compared to the IgG, while retaining tumor targeting. We compared the pharmacokinetics and tumor uptake of (111)In-HuCC49DeltaC(H)2 in BALB/c mice and a colon carcinoma (LS-174T) mouse xenograft with that of (111)In-labeled chimeric CC49 (cCC49), an antibody with pharmacokinetics similar to the humanized CC49 parent. Immuno-conjugates of HuCC49DeltaC(H)2 and cCC49 prepared with the (111)In chelator Mx-DTPA (1-isothiocyantobenzyl-3-methyldiethylenetriaminepentaacetic acid) retained low nM affinity and radiolabeling protocols provided greater than 95% radio-incorporation with (111)In while retaining greater than 80% immunoreactivity. Blood clearance of (111)In-HuCC49DeltaC(H)2 in BALB/c mice was monoexponential (t(1/2) 5.4 hours) and faster than (111)In-cCC49 (biexponential clearance; t1/2Delta 1.5 hours; t1/2beta 162 hours). The (111)In-HuCC49DeltaC(H)2 also cleared more rapidly from the blood in the murine xenograft. At 1 hour postinjection, blood concentrations for (111)In-HuCC49DeltaC(H)2 and (111)In-cCC49 were comparable (25.5 injected dose per g [%ID/g] and 21.3 %ID/g, respectively); tumor uptake for (111)In- HuCC49DeltaC(H)2 was 7.9 %ID/g, compared to 7.5 %ID/g for (111)In-cCC49. However, at 24 hours, blood concentration for (111)In-HuCC49DeltaC(H)2 was less than (111)In-cCC49 (0.9 %ID/g versus 5.2 %ID/g, respectively) with comparable tumor retention (14.4 %ID/g versus 19.0 %ID/g, respectively). Faster blood clearance of (111)In-HuCC49DeltaC(H)2 and tumor localization comparable to that of (111)In-cCC49 provided a fourfold improved tumor-to-blood ratio for (111)In-HuCC49DeltaC(H)2 at 24 hours postinjection.
Integrin a6b4Ámediated adhesion interactions play key roles in keratinocyte and epithelial tumor cell biology. In order to evaluate how a6b4 adhesion interactions contribute to these important cellular processes, the authors generated soluble versions of the integrin by recombinant expression of the subunit ectodomains fused to a human immunoglobulin G (IgG) Fc constant domain. Coexpression of the appropriate subunits enabled dimerization, secretion and purification of stable Fc-containing a6b4 heterodimers. The soluble proteins exhibited the same metal ion and ligand dependency in their binding characteristics as intact a6b4. Using these reagents in combination with anti-b4 antibodies, the authors identified two distinct functional epitopes on the b4 subunit. They demonstrated the involvement of one epitope in adhesion interactions and the other in regulating adhesion-independent growth in a6b4-expressing tumor cell lines. The availability of these soluble integrin reagents and the data provided herein help to further delineate the structure-function relationships regulating a6b4 signaling biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.