BACKGROUND Whole blood (WB) has been used in combat since World War I as it is readily available and replaces every element of shed blood. Component therapy has become standard; however, recent military successes with WB resuscitation have revived the debate regarding wider WB use. Characterization of optimal WB storage is needed. We hypothesized that refrigeration preserves WB function and that a pathogen reduction technology (PRT) based on riboflavin and ultraviolet light has no deleterious effect over 21 days of storage. STUDY DESIGN AND METHODS WB units were stored for 21 days either at 4°C or 22°C. Half of each temperature group underwent PRT, yielding four final treatment groups (n = 8 each): CON 4 (WB at 4°C); CON 22 (WB at 22°C); PRT 4 (PRT WB at 4°C); and PRT 22 (PRT WB at 22°C). Testing was at baseline, Days 1–7, 10, 14, and 21. Assays included coagulation factors; platelet activation, aggregation, and adhesion; and thromboelastography (TEG). RESULTS Prothrombin time (PT) and partial thromboplastin time increased over time; refrigeration attenuated the effects on PT (p ≤ 0.009). Aggregation decreased over time (p ≤ 0.001); losses were attenuated by refrigeration (p ≤ 0.001). Refrigeration preserved TEG parameters (p ≤ 0.001) and PRT 4 samples remained within normal limits throughout the study. Refrigeration in combination with PRT inhibited fibrinolysis (p ≤ 0.001) and microparticle formation (p ≤ 0.031). Cold storage increased shear-induced platelet aggregation and ristocetin-induced platelet agglutination (p ≥ 0.032), as well as GPIb-expressing platelets (p ≤ 0.009). CONCLUSION The in vitro hemostatic function of WB is largely unaffected by PRT treatment and better preserved by cold storage over 21 days. Refrigerated PRT WB may be suitable for trauma resuscitation. Clinical studies are warranted.
In contrast to other causes of herpetic lymphadenitis, the histological features associated with human herpesvirus-6 (HHV-6) infection have remained elusive since its discovery in 1986. We describe the histologic and phenotypic changes associated with acute HHV-6 lymphadenitis in two immunocompetent adults who presented with fever, fatigue, generalized lymphadenopathy, and elevated liver enzymes. Serologic tests for human immunodeficiency virus, acute Epstein-Barr virus, and cytomegalovirus infection were negative. Lymph node biopsies were consistent with viral lymphadenitis. Intranuclear and cytoplasmic inclusions were identified in CD4-positive T lymphocytes in expanded paracortical areas. Immunohistochemical staining with monoclonal antibody to the HHV-6 gp60/110 kDa envelope glycoprotein showed that the inclusions were positive for viral antigen. Electron microscopy demonstrated numerous viral particles in the cytoplasm and nucleus, characteristic of Herpesviridae family. Clustering of viral particles was observed, which has previously been reported only in infected tissue culture cells. PCR followed by sequencing of DNA extracted from the lymph nodes identified the virus as HHV-6, type B. This is the first report that documents distinctive histologic features of HHV-6 lymphadenitis and demonstrates that the cells harboring the virus in vivo are CD4-positive T lymphocytes.
BACKGROUND Using platelet additive solution (PAS) to dilute fibrinogen during long‐term cold storage of platelets (PLTs) decreases PLT activation and increases functional PLT shelf life. We performed a randomized, paired study to assess the in vitro quality of PLTs stored in the cold in T‐PAS+ for up to 18 days evaluated against PLTs stored under currently allowable conditions (5‐day room temperature–stored PLTs [RTP] and 3‐day cold‐stored PLTs [CSP]). STUDY DESIGN AND METHODS PLTs were collected from healthy volunteers (n = 10) and diluted to 65% T‐PAS+/35% plasma before cold storage. Double‐dose apheresis PLTs (in 100% plasma) were collected from the same donors and split into two bags (one bag RTP, one bag CSP). All bags were sampled on the day of collection (Day 0). CSP and RTP bags were sampled on Days 3 and 5, respectively. T‐PAS+ samples were assessed on Days 3, 5, 14, 16, and 18 of storage for metabolism, hemostatic function, and activation. RESULTS After 18 days of storage in T‐PAS+, pH was 6.71 ± 0.04, PLT count was comparable to Day 3 CSP, PLT function (aggregation and clot strength) was comparable to Day 5 RTP, and PLT activation was significantly increased. CONCLUSION Refrigerated PLTs stored in T‐PAS+ for 18 days met FDA pH standards. Functional metrics suggest activity of T‐PAS+‐stored PLTs and the potential to contribute to hemostasis throughout 18 days of storage. Extending the shelf life of PLTs would increase access to hemostatic resuscitation for bleeding patients in military and civilian settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.