Three populations of myogenic cells were isolated from normal mouse skeletal muscle based on their adhesion characteristics and proliferation behaviors. Although two of these populations displayed satellite cell characteristics, a third population of long-time proliferating cells expressing hematopoietic stem cell markers was also identified. This third population comprises cells that retain their phenotype for more than 30 passages with normal karyotype and can differentiate into muscle, neural, and endothelial lineages both in vitro and in vivo. In contrast to the other two populations of myogenic cells, the transplantation of the long-time proliferating cells improved the efficiency of muscle regeneration and dystrophin delivery to dystrophic muscle. The long-time proliferating cells' ability to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, their multipotent differentiation, and their immune-privileged behavior, reveals, at least in part, the basis for the improvement of cell transplantation. Our results suggest that this novel population of muscle-derived stem cells will significantly improve muscle cell–mediated therapies.
Several recent studies suggest the isolation of stem cells in skeletal muscle, but the functional properties of these muscle-derived stem cells is still unclear. In the present study, we report the purification of muscle-derived stem cells from the mdx mouse, an animal model for Duchenne muscular dystrophy. We show that enrichment of desmin+ cells using the preplate technique from mouse primary muscle cell culture also enriches a cell population expressing CD34 and Bcl-2. The CD34+ cells and Bcl-2+ cells were found to reside within the basal lamina, where satellite cells are normally found. Clonal isolation and characterization from this CD34+Bcl-2+ enriched population yielded a putative muscle-derived stem cell, mc13, that is capable of differentiating into both myogenic and osteogenic lineage in vitro and in vivo. The mc13 cells are c-kit and CD45 negative and express: desmin, c-met and MNF, three markers expressed in early myogenic progenitors; Flk-1, a mouse homologue of KDR recently identified in humans as a key marker in hematopoietic cells with stem cell-like characteristics; and Sca-1, a marker for both skeletal muscle and hematopoietic stem cells. Intramuscular, and more importantly, intravenous injection of mc13 cells result in muscle regeneration and partial restoration of dystrophin in mdx mice. Transplantation of mc13 cells engineered to secrete osteogenic protein differentiate in osteogenic lineage and accelerate healing of a skull defect in SCID mice. Taken together, these results suggest the isolation of a population of muscle-derived stem cells capable of improving both muscle regeneration and bone healing.
Background-Preclinical atherosclerosis is associated with increased endothelial cell (EC) expression of leukocyte adhesion molecules (LAMs), which mediate monocyte adhesion during atherogenesis. Identification of cell-surface LAMs may uniquely allow assessment of endothelial function, but there are no in vivo methods for detecting LAMs. We tested a new microbubble designed to bind to and allow specific ultrasound detection of intercellular adhesion molecule-1 (ICAM-1). Methods and Results-A perfluorobutane gas-filled lipid-derived microsphere with monoclonal antibody to ICAM-1 covalently bound to the bubble shell was synthesized. Bubbles with either nonspecific IgG or no protein on the shell were synthesized as controls. Coverslips of cultured human coronary artery ECs were placed in a parallel-plate perfusion chamber and exposed to 1 of the 3 microbubble species, followed by perfusion with culture medium. Experiments were performed with either normal or interleukin-1-activated ECs overexpressing ICAM-1, and bubble adherence was quantified with epifluorescent videomicroscopy. There was limited adherence of control bubbles to normal or activated ECs, whereas a 40-fold increase in adhesion occurred when anti-ICAM-1-conjugated bubbles were exposed to activated ECs compared with normal ECs (8.1Ϯ3.5 versus 0.21Ϯ0.09 bubbles per cell, respectively, PϽ0.001).Although diminished, this difference persisted even after perfusion at higher wall shear rates. Conclusions-A gas-filled microbubble with anti-ICAM-1 antibody on its shell specifically binds to activated ECs overexpressing ICAM-1. Diagnostic ultrasound in conjunction with targeted contrast agents has the unique potential to characterize cell phenotype in vivo. (Circulation. 1998;98:1-5.)
We hereby report a 1-year follow-up on eight women in the first North America trial in which stress urinary incontinence (SUI) was treated with muscle-derived stem cell injections. Mean and median follow-up in this group was 16.5 and 17 months (range 3-24 months). Improvement in SUI was seen in five of eight women, with one achieving total continence. Onset of improvement was between 3 and 8 months after injection. Cure or improvement continued at a median of 10 months. No serious adverse events were reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.