In Escherichia coli, a signal recognition particle (SRP) has been identified which binds specifically to the signal sequence of presecretory proteins and which appears to be essential for efficient translocation of a subset of proteins. In this study we have investigated the function of E. coli FtsY which shares sequence similarity with the alpha‐subunit of the eukaryotic SRP receptor (‘docking protein’) in the membrane of the endoplasmic reticulum. A strain was constructed which allows the conditional expression of FtsY. Depletion of FtsY is shown to cause the accumulation of the precursor form of beta‐lactamase, OmpF and ribose binding protein in vivo, whereas the processing of various other presecretory proteins is unaffected. Furthermore, FtsY‐depleted inverted cytoplasmic membrane vesicles are shown to be defective in the translocation of pre‐beta‐lactamase using an in vitro import assay. Subcellular localization studies revealed that FtsY is located in part at the cytoplasmic membrane with which it seems peripherally associated. These observations suggest that FtsY is the functional E. coli homolog of the mammalian SRP receptor.
Study ObjectiveThe neutrophil-lymphocyte count ratio (NLCR) has been identified as a predictor of bacteremia in medical emergencies. The aim of this study was to investigate the value of the NLCR in patients with community-acquired pneumonia (CAP).Methods and ResultsConsecutive adult patients were prospectively studied. Pneumonia severity (CURB-65 score), clinical characteristics, complications and outcomes were related to the NLCR and compared with C-reactive protein (CRP), neutrophil count, white blood cell (WBC) count. The study cohort consisted of 395 patients diagnosed with CAP. The mean age of the patients was 63.4±16.0 years. 87.6% (346/395) of the patients required hospital admission, 7.8% (31/395) patients were admitted to the Intensive Care Unit (ICU) and 5.8% (23/395) patients of the study cohort died. The NLCR was increased in all patients, predicted adverse medical outcome and consistently increased as the CURB-65 score advanced. NLCR levels (mean ± SD) were significantly higher in non-survivors (23.3±16.8) than in survivors (13.0±11.4). The receiver-operating characteristic (ROC) curve for NLCR predicting mortality showed an area under the curve (AUC) of 0.701. This was better than the AUC for the neutrophil count, WBC count, lymphocyte count and CRP level (0.681, 0.672, 0.630 and 0.565, respectively).ConclusionAdmission NLCR at the emergency department predicts severity and outcome of CAP with a higher prognostic accuracy as compared with traditional infection markers.
In Escherichia coli, components of a signal recognition particle (SRP) and its receptor have been identified which appear to be essential for efficient translocation of several proteins. In this study we use cross‐linking to demonstrate that E. coli SRP interacts with a variety of nascent presecretory proteins and integral inner membrane proteins. Evidence is presented that the interaction is correlated with the hydrophobicity of the core region of the signal sequence and thereby with its ability to promote transport in vivo. A second E. coli component, which is identified as trigger factor, can be efficiently cross‐linked to all tested nascent chains derived from both secreted and cytosolic proteins. We propose that SRP and trigger factor act as secretion‐specific and general molecular chaperone respectively, early in protein synthesis.
Molecular pathogen detection from blood is still expensive and the exact clinical value remains to be determined. The use of biomarkers may assist in preselecting patients for immediate molecular testing besides blood culture. In this study, 140 patients with ≥ 2 SIRS criteria and clinical signs of infection presenting at the emergency department of our hospital were included. C-reactive protein (CRP), neutrophil-lymphocyte count ratio (NLCR), procalcitonin (PCT) and soluble urokinase plasminogen activator receptor (suPAR) levels were determined. One ml EDTA blood was obtained and selective pathogen DNA isolation was performed with MolYsis (Molzym). DNA samples were analysed for the presence of pathogens, using both the MagicPlex Sepsis Test (Seegene) and SepsiTest (Molzym), and results were compared to blood cultures. Fifteen patients had to be excluded from the study, leaving 125 patients for further analysis. Of the 125 patient samples analysed, 27 presented with positive blood cultures of which 7 were considered to be contaminants. suPAR, PCT, and NLCR values were significantly higher in patients with positive blood cultures compared to patients without (p < 0.001). Receiver operating characteristic curves of the 4 biomarkers for differentiating bacteremia from non-bacteremia showed the highest area under the curve (AUC) for PCT (0.806 (95% confidence interval 0.699–0.913)). NLCR, suPAR and CRP resulted in an AUC of 0.770, 0.793, and 0.485, respectively. When compared to blood cultures, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for SepsiTest and MagicPlex Sepsis Test were 11%, 96%, 43%, 80%, and 37%, 77%, 30%, 82%, respectively. In conclusion, both molecular assays perform poorly when one ml whole blood is used from emergency care unit patients. NLCR is a cheap, fast, easy to determine, and rapidly available biomarker, and therefore seems most promising in differentiating BSI from non-BSI patients for subsequent pathogen identification using molecular diagnostics.
The genetic organization of thefoc gene cluster has been studied; six genes involved in the biogenesis of FlC fimbriae were identified. focA encodes the major fimbrial subunit,focC encodes a product that is indispensable for fimbria formation, ocG and focH encode minor fimbrial subunits, andfocI encodes a protein which shows similarities to the subunit protein FocA. Apart from the FocA major subunits, purified FlC fimbriae contain at least two minor subunits, FocG and FocH. Minor proteins of similar size were observed in purified S fimbriae. Remarkably, some mutations in the foc gene cluster result in an altered fimbrial morphology, i.e., rigid stubs or long, curly fimbriae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.