The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks. * The first two authors have contributed equally and are listed alphabetically. Ron Levie is with the Institute
This paper focuses on spectral filters on graphs, namely filters defined as elementwise multiplication in the frequency domain of a graph. In many graph signal processing settings, it is important to transfer a filter from one graph to another. One example is in graph convolutional neural networks (ConvNets), where the dataset consists of signals defined on many different graphs, and the learned filters should generalize to signals on new graphs, not present in the training set. A necessary condition for transferability (the ability to transfer filters) is stability. Namely, given a graph filter, if we add a small perturbation to the graph, then the filter on the perturbed graph is a small perturbation of the original filter. It is a common misconception that spectral filters are not stable, and this paper aims at debunking this mistake. We introduce a space of filters, called the Cayley smoothness space, that contains the filters of state-of-the-art spectral filtering methods, and whose filters can approximate any generic spectral filter. For filters in this space, the perturbation in the filter is bounded by a constant times the perturbation in the graph, and filters in the Cayley smoothness space are thus termed linearly stable. By combining stability with the known property of equivariance, we prove that graph spectral filters are transferable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.