Logs of high-value eastern black walnut (Juglans nigra L.) are commonly exported from the United States for production of veneer and lumber. Veneer logs are not debarked to minimize degradation of wood quality and reduce moisture loss. Thousand cankers disease (TCD) is caused by the walnut twig beetle (Pityophthorus juglandis Blackman) and the fungal pathogen, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley and N. Tisserat sp. nov., which colonize the inner bark of Juglans species. Effective eradication of these organisms by heat or chemical fumigation treatment is required for walnut logs prior to export. Because vacuum steam is an effective and efficient means of heating round wood, its use in eliminating the TCD causal agents was evaluated using Juglans logs (12- to 44-cm small end diameter and 1.7- to 1.9-m length) from TCD-symptomatic trees in Oregon and Washington State. Five replicate trials with three logs per load were conducted in a portable vacuum chamber to test two treatment schedules: 60°C for 60 min and 56°C for 30 min. Complete elimination of P. juglandis and G. morbida was achieved when using a minimum of 56°C at 5-cm targeted depth from bottom of bark furrow into the sapwood and held for 30 min. Treatment cycle time ranged from 298 to 576 min depending on log diameter and initial log temperature. Artificial inoculation of J. nigra trees with G. morbida within the TCD range in Pennsylvania was minimally successful in producing adequately colonized logs for experimental trials.
There is an immediate need to develop and adopt new treatment technologies for eliminating insect pest and tree pathogens from veneer logs moved in trade. This is largely due to the current phase-out of methyl bromide and the uncertainty associated with the efficacy of potential alternatives. Vacuum and steam in combination has a proven and reliable record for commercially sanitizing a variety of commodities, including cotton, spices and textiles among others. This study was designed to evaluate basic parameters of vacuum and steam application on five high value hardwood veneer log species in an effort to ascertain the feasibility of continued treatment development. Relative heating rates to log center, damage and value loss assessment due to treatment, and overall energy used during treatment were recorded for logs treated individually in a flexible polymer chamber. At 200 mm Hg vacuum, time to reach 56°C for 30 min to core ranged from 17 to 29 h, depending on density and log diameter. End checking varied by species, but veneer sawn from logs was largely unaffected in terms of yield and value. Energy used during treatments ranged from 54 to 205 kWh for individual logs. Results suggest that vacuum and steam as a phytosanitary treatment for hardwood veneer logs has potential and should be explored further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.