Complex networks are studied across many fields of science. To uncover their structural design principles, we defined "network motifs," patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.
Little is known about the design principles 1-10 of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis 2,11,12 , however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams 1-10,13 , we sought to break down such networks into basic building blocks 2 . We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli 3,6 . We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.We compiled a data set of direct transcriptional interactions between transcription factors and the operons they regulate (an operon is a group of contiguous genes that are transcribed into a single mRNA molecule). This database contains 577 interactions and 424 operons (involving 116 transcription factors); it was formed on the basis of on an existing database (RegulonDB) 3,14 . We enhanced RegulonDB by an extensive literature search, adding 35 new transcription factors, including alternative σ-factors (subunits of RNA polymerase that confer recognition of specific promoter sequences). The data set consists of established interactions in which a transcription factor directly binds a regulatory site.The transcriptional network can be represented as a directed graph, in which each node represents an operon and edges represent direct transcriptional interactions. Each edge is directed
Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.
Complex biological, technological, and sociological networks can be of very different sizes and connectivities, making it difficult to compare their structures. Here we present an approach to systematically study similarity in the local structure of networks, based on the significance profile (SP) of small subgraphs in the network compared to randomized networks. We find several superfamilies of previously unrelated networks with very similar SPs. One superfamily, including transcription networks of microorganisms, represents "rate-limited" information-processing networks strongly constrained by the response time of their components. A distinct superfamily includes protein signaling, developmental genetic networks, and neuronal wiring. Additional superfamilies include power grids, protein-structure networks and geometric networks, World Wide Web links and social networks, and word-adjacency networks from different languages.
It is often presented as common knowledge that, in the human body, bacteria outnumber human cells by a ratio of at least 10:1. Revisiting the question, we find that the ratio is much closer to 1:1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.