Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.
The Thematic Mapper (TM) instruments onboard Landsats 4 and 5 provide high-quality imagery appropriate for many different applications, including land cover mapping, landscape ecology, and change detection. Precise calibration was considered to be critical to the success of the Landsat 7 mission and, thus, issues of calibration were given high priority during the development of the Enhanced Thematic Mapper Plus (ETM+). Data sets from the Landsat 5 TM are not routinely corrected for a number of radiometric and geometric artifacts, including memory effect, gain/bias, and interfocal plane misalignment. In the current investigation, the effects of correcting vs. not correcting these factors were investigated for several applications. Gain/bias calibrations were found to have a greater impact on most applications than did memory effect calibrations. Correcting interfocal plane offsets was found to have a moderate effect on applications. On June 2, 1999, Landsats 5 and 7 data were acquired nearly simultaneously over a study site in the Niobrara, NE area. Field radiometer data acquired at that site were used to facilitate crosscalibrations of Landsats 5 and 7 data. Current findings and results from previous investigations indicate that the internal calibrator of Landsat 5 TM tracked instrument gain well until 1988. After this, the internal calibrator diverged from the data derived from vicarious calibrations. Results from this study also indicate very good agreement between prelaunch measurements and vicarious calibration data for all Landsat 7 reflective bands except Band 4. Values are within about 3.5% of each other, except for Band 4, which differs by 10%. Coefficient of variation (CV) values derived from selected targets in the imagery were also analyzed. The Niobrara Landsat 7 imagery was found to have lower CV values than Landsat 5 data, implying that lower levels of noise characterize Landsat 7 data than current Landsat 5 data. It was also found that following radiometric normalization, the Normalized Difference Vegetation Index (NDVI) imagery and classification products of Landsats 5 and 7 were very similar. This implies that data from the two sensors can be used to measure and monitor the same landscape phenomena and that Landsats 5 and 7 data can be used interchangeably with proper caution. In addition, it was found that difference imagery produced using Landsat 7 ETM+ data are of excellent quality. D
Combining data from multiple sensors into a single seamless time series, also known as data interoperability, has the potential for unlocking new understanding of how the Earth functions as a system. However, our ability to produce these advanced data sets is hampered by the differences in design and function of the various optical remote-sensing satellite systems. A key factor is the impact that calibration of these instruments has on data interoperability. To address this issue, a workshop with a panel of experts was convened in conjunction with the Pecora 20 conference to focus on data interoperability between Landsat and the Sentinel 2 sensors. Four major areas of recommendation were the outcome of the workshop. The first was to improve communications between satellite agencies and the remote-sensing community. The second was to adopt a collections-based approach to processing the data. As expected, a third recommendation was to improve calibration methodologies in several specific areas. Lastly, and the most ambitious of the four, was to develop a comprehensive process for validating surface reflectance products produced from the data sets. Collectively, these recommendations have significant potential for improving satellite sensor calibration in a focused manner that can directly catalyze efforts to develop data that are closer to being seamlessly interoperable.
Landsat-8 was launched on 11 February 2013 with two new Earth Imaging sensors to provide a continued data record with the previous Landsats. For Landsat-8, pushbroom technology was adopted, and the reflective bands and thermal bands were split into two instruments. The Operational Land Imager (OLI) is the reflective band sensor and the Thermal Infrared Sensor (TIRS), the thermal. In addition to these fundamental changes, bands were added, spectral bandpasses were refined, dynamic range and data quantization were improved, and numerous other enhancements were implemented. As in previous Landsat missions, the National Aeronautics and Space Administration (NASA) and United States Geological Survey (USGS) cooperated in the development, launch and operation of the Landsat-8 mission. One key aspect of this cooperation was in the characterization and calibration of the instruments and their data. This Special Issue documents the efforts of the joint USGS and NASA calibration team and affiliates to characterize the new sensors and their data for the benefit of the scientific and application users of the Landsat archive. A key scientific use of Landsat data is to assess changes in the land-use and land cover of the Earth’s surface over the now 43-year record. [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.