Still active Sub-Andean foreland deformation is suggested to have syndepositionally modified the fluvial depositional environments in the Peruvian Amazonian foreland basin throughout Neogene-Quaternary time. Modern fluvial aggradation continues to proceed on a large scale (c. 120 000 km2) in two differing depositional systems. Firstly, various multistoried floodbasin deposits are derived from the meandering and anastomosing rivers within the subsiding intraforeland basins. Secondly, in the northern part of the Pastaza-Marañon basin the largest known Holocene alluvial fan-like formation (c. 60 000 km2) composed of reworked, volcaniclastic debris derived from active Ecuadorian volcanoes, has been identified.The widespread, poorly known, dissected surface alluvium (terra firme) which covers the main part of the Peruvian Amazonian foreland basin shows further evidence of long-term foreland deformation, and terraces indicate both the effects of tectonism and Pleistocene climatic oscillations. In northern Peru, the surface alluvium was deposited by a Tertiary fluvial system with palaeocurrents to the west and northwest into the Andean foreland basin. In southern Peru, the respective surficial alluvium was part of a post-Miocene fluvial system flowing northeast into the main Amazon basin. Both systems were gradually abandoned when the eastward migrating Andean foreland deformation led to the more distinctive partitioning of the intraforeland basins, and the modern drainage system was created.
Aims: To provide evidence of septic system failure by comparing two faecal indicator bacteria, enterococci and Escherichia coli, from defective septic tanks and adjacent creeks. Methods and Results: A biochemical fingerprinting method was used to type and compare enterococci and E. coli strains from 39 septic tanks with creek water samples. Phenotypic diversity of enterococci (0AE5 ± 0AE3) and E. coli (0AE5 ± 0AE3) in septic tanks were significantly lower than those found in water samples (0AE8 ± 0AE1, P < 0AE0001 for enterococci and 0AE9 ± 0AE1, P < 0AE0001 for E. coli). Among 1072 enterococci isolates tested from septic tanks, 203 biochemical phenotypes (BPTs) were found of which 98 BPTs from 33 septic tanks were identical to several water samples. Similarly, among 621 E. coli isolates tested from septic tanks, 159 BPTs were found of which 53 BPTs from 26 septic tanks were also identical to water samples. The number of the latter bacteria was significantly (P ¼ 0AE01) higher in water samples collected from downstream compared with that of upstream in the study area. A high similarity between the populations of both indicator bacteria was also found between defective septic tanks and downstream water samples further indicating the contamination of both creeks by defective septic systems. Conclusions: Biochemical fingerprinting of faecal indicator bacteria is a useful and rapid method to provide direct evidence for septic system failure. Combination of both faecal indicator bacteria (enterococci and E. coli) provides a better judgement of the performance of a septic system. Significance and Impact of the Study: This study is the first to provide direct evidence of septic system failure by identifying the presence of specific bacterial types in septic tanks and surface waters. Based on our findings, we suggest that the performance evaluation of a septic system should be accompanied by direct analysis of faecal indicator bacteria.
A metabolic fingerprint database of enterococci and Escherichia coli from 10 host groups of animals was developed to trace the sources of fecal contamination in surface waters. In all, 526 biochemical phenotypes (BPTs) of enterococci and 530 E. coli BPTs were obtained from 4,057 enterococci and 3,728 E. coli isolates tested. Of these, 231 Enterococcus BPTs and 257 E. coli BPTs were found in multiple host groups. The remaining 295 Enterococcus BPTs and 273 E. coli BPTs were unique to individual host groups. The database was used to trace the sources of fecal contamination in a local creek. The mean diversities (Di) of enterococci (Di ؍ 0.76 ؎ 0.05) and E. coli (Di ؍ 0.88 ؎ 0.04) were high (maximum 1) in water samples, indicating diverse sources of fecal contamination. Overall, 71% of BPTs of enterococci and 67% of E. coli BPTs from water samples were identified as human and animal sources. Altogether, 248 Enterococcus BPTs and 282 E. coli BPTs were found in water samples. Among enterococci, 26 (10%) BPTs were identical to those of humans and 152 BPTs (61%) were identical to those of animals (animal BPTs). Among E. coli isolates, 36 (13%) BPTs were identical to those of humans and 151 (54%) BPTs were identical to those of animals. Of the animal BPTs, 101 (66%) Enterococcus BPTs and 93 (62%) E. coli BPTs were also unique to individual animal groups. On the basis of these unique Enterococcus BPTs, chickens contributed 14% of contamination, followed by humans (10%), dogs (7%), and horses (6%). For E. coli, humans contributed 13% of contamination, followed by ducks (9%), cattle (7%), and chickens (6%). The developed metabolic fingerprint database was able to distinguish between human and animal sources as well as among animal species in the studied catchment.
Five years after the cessation of housing construction in a small urban catchment in Armidale, New South Wales, the stability of the channel bed and banks was investigated with the use of erosion pins. After eighteen months of monitoring, the rate of channel bank erosion was found to be 3.6 times greater than that of a nearby rural channel and the rate of knickpoint retreat was 2.4 times greater. There was, however, no evidence to suggest that the urban channel was inherently unstable, but that the increased rate of erosion was the product of: changed runoff conditions associated with urban development. Both channels are considered to be in a state of equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.