N-Alkyl-N-nitrosoamides undergo competitive reactions whose rates are dependent upon the interplay of a number of factors. There already exists a significant body of work delineating the effects of pH on the partitioning of the nitrosoamides along their deaminative (-N(2)) and denitrosative (-"NO(+)") pathways. In this paper, the issue of pH dependence is discussed with particular attention to nitrosoamide decompositions in nonaqueous media. The role of the acidity of the medium in the partitioning of the nitrosoamide between deamination and denitrosation and in the choice of deaminative pathways is revisited. In nonaqueous media under near-neutral conditions, the partitioning's pH dependence is evidently accompanied by a sensitivity to structural features in the nitrosoamide. Thus, diminution of steric crowding around the N-nitroso moiety as well as the presence of strongly electron-withdrawing acyl units (i.e., those derived from strong acids, e.g., tosyl and trifyl) increase the relative yield of amides by encouraging the denitrosative pathway. A mechanism for thermal denitrosation of nitrosoamides under near-neutral conditions is proposed in which rapid protonation at the acyl O rather than slow protonation at the amidic N is the first step in the reaction profile. A rate-limiting, bimolecular reaction between the O-conjugate acid and adventitious nucleophiles at the nitrosyl group then occurs followed by rapid tautomerization to amide.
Nitrogen-and nitrous oxide-separated ion pairs containing 4-substituted benzyl cations and carboxylate or tosylate anions were prepared by thermolysis of N-nitroso-and N-nitroamides, acidification of phenyldiazomethane, and nitrosation of N-benzyl-O-benzoylhydroxylamine. The cations were generated in benzene/toluene and benzene/anisole mixtures and were found to partition between the counterion and the solvent and between the aromatic cosolvent and benzene. A familial relationship among the methods was observed. As the cation became more reactive, the yield of solvent-derived products (SDPs) rose and the ratio of rate constants for its reaction with toluene versus benzene, k T /k B , fell. The yield of SDP also rose as the temperature was decreased and as N 2 was replaced by N 2 O; however, k T /k B remained unchanged. Inert diluents had no effect on k T /k B but decreased hydrocarbon yield by 40% on 2-fold dilution. In the presence of reactive diluents that are converted into secondary alkylating agents, both the % hydrocarbon and k T /k B rose. These results are interpreted in terms of the intermediacy of inert-molecule-separated ion pairs (IMSIPs) in deamination. The cation reacted with benzoates and tosylates not only at the oxygens but also at the ipso carbon; subsequent decarboxylation and desulfonylation, respectively, led to diphenylmethanes. The ester/SDP ratio is introduced as a new measure of carbocation reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.