The knowledge of human genetic variation that will come from the human genome sequence makes feasible a polygenic approach to disease prevention, in which it will be possible to identify individuals as susceptible by their genotype profile and to prevent disease by targeting interventions to those at risk. There is doubt, however, regarding the magnitude of these genetic effects and thus the potential to apply them to either individuals or populations. We have therefore examined the potential for prediction of risk based on common genetic variation using data from a population-based series of individuals with breast cancer. The data are compatible with a log-normal distribution of genetic risk in the population that is sufficiently wide to provide useful discrimination of high-and low-risk groups. Assuming all of the susceptibility genes could be identified, the half of the population at highest risk would account for 88% of all affected individuals. By contrast, if currently identified risk factors for breast cancer were used to stratify the population, the half of the population at highest risk would account for only 62% of all cases. These results suggest that the construction and use of genetic-risk profiles may provide significant improvements in the efficacy of populationbased programs of intervention for cancers and other diseases.
The clinical phenotype of heterozygous familial hypercholesterolemia (FH) is characterized by increased plasma levels of total cholesterol and low density lipoprotein cholesterol, tendinous xanthomata, and premature symptoms of coronary heart disease. It is inherited as an autosomal dominant disorder with homozygotes having a more severe phenotype than do heterozygotes. FH can result from mutations in the low density lipoprotein receptor gene (LDLR), the apolipoprotein B-100 gene (APOB), and the recently identified proprotein convertase subtilisin/kexin type 9 gene (PCSK9). To date, over 700 variants have been identified in the LDLR gene. With the exception of a small number of founder populations where one or two mutations predominate, most geographically based surveys of FH subjects show a large number of mutations segregating in a given population. Studies of the prevalence of FH would be improved by the use of a consistent and uniformly applied clinical definition. Because FH responds well to drug treatment, early diagnosis to reduce atherosclerosis risk is beneficial. Cascade testing of FH family members is cost effective and merits further research. For screening to be successful, public health and general practitioners need to be aware of the signs and diagnosis of FH and the benefits of early treatment.
Familial hypercholesterolemia (FH) is an autosomal disorder characterized by increased levels of total cholesterol and low density lipoprotein cholesterol. The FH clinical phenotype has been shown to be associated with increased coronary heart disease and premature death. Mutations in the low density lipoprotein receptor gene (LDLR) can result in the FH phenotype, and there is evidence that receptor-negative mutations result in a more severe phenotype than do receptor-defective mutations. Mutations in the apolipoprotein B-100 gene (APOB) can result in a phenotype that is clinically indistinguishable from familial hypercholesterolemia, and mutations in this gene have also been shown to be associated with coronary heart disease. Preliminary research indicates that the FH phenotype is influenced by other genetic and environmental factors; however, it is not clear if these are synergistic interactions or simply additive effects.
The American College of Medical Genetics and Genomics recently issued recommendations for reporting incidental findings from clinical whole-genome sequencing and whole-exome sequencing. The recommendations call for evaluating a specific set of genes as part of all whole-genome sequencing/whole-exome sequencing and reporting all pathogenic variants irrespective of patient age. The genes are associated with highly penetrant disorders for which treatment or prevention is available. The effort to generate a list of genes with actionable findings is commendable, but the recommendations raise several concerns. They constitute a call for opportunistic screening, through intentional effort to identify pathogenic variants in specified genes unrelated to the clinical concern that prompted testing. Yet for most of the genes, we lack evidence about the predictive value of testing, genotype penetrance, spectrum of phenotypes, and efficacy of interventions in unselected populations. Furthermore, the recommendations do not allow patients to decline the additional findings, a position inconsistent with established norms. Finally, the recommendation to return adult-onset disease findings when children are tested is inconsistent with current professional consensus, including other policy statements of the American College of Medical Genetics and Genomics. Instead of premature practice recommendations, we call for robust dialogue among stakeholders to define a pathway to normatively sound, evidence-based guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.