The loops of modular polyketide synthases (PKSs) serve diverse functions but are largely uncharacterized. They frequently contain amino acid repeats resulting from genetic events such as slipped‐strand mispairing. Determining the tolerance of loops to amino acid changes would aid in understanding and engineering these multidomain molecule factories. Here, tandem repeats in the DNA encoding 949 modules within 129 cis‐acyltransferase PKSs were cataloged, and the locations of the corresponding amino acids within the module were identified. The most frequently inserted interdomain loop corresponds with the updated module boundary immediately downstream of the ketosynthase (KS), while the loops bordering the dehydratase are nearly intolerant to such insertions. From the 949 modules, no repetitive sequence loop insertions are located within ACP, and only 2 reside within KS, indicating the sensitivity of these domains to alteration.
The loops of modular polyketide synthases (PKSs) serve diverse functions but are largely uncharacterized. They frequently contain amino acid repeats resulting from genetic events such as slipped-strand mispairing. Determining the tolerance of loops to amino acid changes would aid in understanding and engineering these multidomain molecule factories. Here, tandem repeats in the DNA encoding 949 modules within 129 cis-acyltransferase PKSs were catalogued, and the locations of the corresponding amino acids within the module were identified. The most frequently inserted interdomain loop corresponds with the updated module boundary immediately downstream of the ketosynthase (KS), while the loops bordering the dehydratase (DH) were nearly intolerant to such insertions. An analysis of the loops bordering the acyl carrier protein (ACP) reveals they are relatively short (14±6 residues), that they resist large increases in length, and that ACP may rely on acyltransferase (AT) accessing a conformation like that observed through electron microscopy of the pikromycin PKS. From the 949 modules, no repetitive sequence loop insertions are located within ACP, and only 2 reside within KS, indicating the sensitivity of these domains to alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.