We analyse the dynamics of near-extremal Reissner-Nordström black holes in asymptotically four-dimensional Anti de Sitter space (AdS 4 ). We work in the spherically symmetric approximation and study the thermodynamics and the response to a probe scalar field. We find that the behaviour of the system, at low energies and to leading order in our approximations, is well described by the Jackiw-Teitelboim (JT) model of gravity. In fact, this behaviour can be understood from symmetry considerations and arises due to the breaking of time reparametrisation invariance. The JT model has been analysed in considerable detail recently and related to the behaviour of the SYK model. Our results indicate that features in these models which arise from symmetry considerations alone are more general and present quite universally in near-extremal black holes.
We propose a definition for the entanglement entropy of a gauge theory on a spatial lattice. Our definition applies to any subset of links in the lattice, and is valid for both Abelian and Non-Abelian gauge theories. For Z N and U(1) theories, without matter, our definition agrees with a particular case of the definition given by Casini, Huerta and Rosabal. We also argue that in general, both for Abelian and Non-Abelian theories, our definition agrees with the entanglement entropy calculated using a definition of the replica trick. Our definition, however, does not agree with some standard ways to measure entanglement, like the number of Bell pairs which can be produced by entanglement distillation.
A definition for the entanglement entropy in a gauge theory was given recently in arXiv:1501.02593. Working on a spatial lattice, it involves embedding the physical state in an extended Hilbert space obtained by taking the tensor product of the Hilbert space of states on each link of the lattice. This extended Hilbert space admits a tensor product decomposition by definition and allows a density matrix and entanglement entropy for the set of links of interest to be defined. Here, we continue the study of this extended Hilbert space definition with particular emphasis on the case of Non-Abelian gauge theories.We extend the electric centre definition of Casini, Huerta and Rosabal to the NonAbelian case and find that it differs in an important term. We also find that the entanglement entropy does not agree with the maximum number of Bell pairs that can be extracted by the processes of entanglement distillation or dilution, and give protocols which achieve the maximum bound. Finally, we compute the topological entanglement entropy which follows from the extended Hilbert space definition and show that it correctly reproduces the total quantum dimension in a class of Toric code models based on Non-Abelian discrete groups.
We consider the entanglement entropy for a free U(1) theory in 3+1 dimensions in the extended Hilbert space definition. By taking the continuum limit carefully we obtain a replica trick path integral which calculates this entanglement entropy. The path integral is gauge invariant, with a gauge fixing delta function accompanied by a Faddeev -Popov determinant. For a spherical region it follows that the result for the logarithmic term in the entanglement, which is universal, is given by the a anomaly coefficient. We also consider the extractable part of the entanglement, which corresponds to the number of Bell pairs which can be obtained from entanglement distillation or dilution. For a spherical region we show that the coefficient of the logarithmic term for the extractable part is different from the extended Hilbert space result. We argue that the two results will differ in general, and this difference is accounted for by a massless scalar living on the boundary of the region of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.