The effect of pH, ionic strength (NaCl added), agitation speed, adsorbent mass, and contact time on the removal of tartrazine from an aqueous solution, using an organobentonite, has been studied. A complete factorial design 32 with two replicates was used to evaluate the influence of the dye concentration (30, 40, and 50 mg/L) and amount of adsorbent (25, 35, and 45 mg) on decolorization of the solution. Experimental data were evaluated with Design Expert® software using a response surface methodology (RSM) in order to obtain the interaction between the processed variables and the response. pH values between 2 and 9, stirring speed above 200 rpm, and contact time of 60 min did not have a significant effect on decolorization. The optimum conditions for maximum removal of tartrazine from an aqueous solution of 30 mg/L were follows: pH = 6.0, NaCl concentration = 0.1 M, stirring speed = 230 rpm, temperature = 20°C, contact time = 60 min, and the organobentonite amount = 38.04 mg. The equilibrium isotherm at 20°C was analyzed by means of the Langmuir and Freundlich models, and the maximum adsorption capacity obtained was 40.79 ± 0.71 mg/g. This adsorption process was applied in a sample of industrial wastewater containing tartrazine and sunset yellow, having obtained a decolorization rate higher than 98% for both dyes. These results suggest that organobentonite is an effective adsorbent for the removal of anionic dyes from an aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.