Clustering is considered as the potential approach for network management in vehicular ad hoc network (VANET). The performance of clustering is often assessed based on the stability of the clusters. Hence, most of the clustering methods aim to establish stable clusters. However, besides the stability of cluster, good link quality must be provided, especially when reliable and high-capacity transmission is demanded. Therefore, this paper proposes a clustering method based on coalitional game theory with the purpose to improve the average of vehicle-to-vehicle (V2V) signal-to-noise ratio (SNR) and channel capacity while maintaining the stability of the cluster. In the proposed method, each vehicle attempts to form a cluster with other vehicles according to coalition value. To attain the purpose of clustering, the value of coalition is formulated based on the V2V SNR, connection lifetime, and speed difference between vehicles. In fast-changing network topology, the higher average of SNR can be achieved but the stability of cluster becomes hard to be maintained. Based on the simulation results, SNR improvement can be adjusted in order to balance with the cluster stability by setting the parameters in the proposed method accordingly. Further simulation results show that the proposed method can obtain a higher average of V2V SNR and channel capacity than other relevant methods.
ABSTRAKMakalah ini memaparkan proses pemodelan robot inverted pendulum beroda dua (IPBD) menggunakan dinamika Lagrange. Setelah sistem model robot IPBD diperoleh, teknik kendali optimal dalam hal ini menggunakan linear quadratic regulator (LQR) digunakan untuk melihat step respon sistem dan tanggapan respon sistem terhadap gangguan. Sebelum kendali LQR diimplementasikan, simulasi menggunakan Simulink Matlab dilakukan untuk mendapat parameter gain K pada kendali LQR. Selanjutnya, dengan mengubah-ubah matriks pembobot Q akan diperoleh variasi gain K. Pada penelitian ini dilakukan variasi matriks pembobotan Q sebanyak lima jenis. Sedangkan matriks elemen R dituning dengan nilai satu. Dari hasil pengujian diperoleh bahwa dengan membesarkan pembobotan matriks Q, dihasilkan respon menuju keadaan steady lebih cepat dan overshoot berkurang. Parameter gain K dari hasil simulasi selanjutnya akan diimplementasikan secara embedded programming ke dalam Arduino Uno pada sistem robot IPBD.Kata kunci: Inverted pendulum beroda, Pemodelan, LQR ABSTRACTThis paper describes the process of modeling two-wheeled pendulum inverted robots (IPBD) using the Lagrange dynamics. After the IPBD robot model system was obtained, the optimal control technique in this case using a linear quadratic regulator (LQR) was used to see the system response step and the response of the system response to interference. Before the LQR control is implemented, simulation using Matlab Simulink is conducted to get the gain K parameter on the LQR control. Furthermore, by varying the weighting matrix Q, the gain variation K will be obtained. There are five types of Q weighting matrix in this research and the R element matric is tuned with a value of 1. From the test, obtained results show that by raising the weighting matrix Q is produced a faster response to the steady state and overshoot is reduced. At the final stage, the gain K parameter from the simulation results will be implemented by embedded programming into Arduino Uno on the IPBD robot system.Keywords: Wheeled inverted pendulum, Modelling, LQR
In a vehicular ad hoc network (VANET), the nodes have very high mobility and hence, it is an important challenge to maintain the quality of communication. Due to the mobility, the vehicle nodes should perform handover from one infrastructure to another. Thus, the better quality of signal can be obtained. In vehicle to vehicle (V2V) communication, the nodes may experience more frequent handover than in vehicle to infrastructure (V2I) communication. Frequent handover can aggravate the networks especially in routing process, since the network topology is also changed when a handover occurred. Moreover, the network resources are also used for handover process and hence the communication overhead increases. In this paper, a handover decision method is proposed to reduce the handover rate in V2V communication while maintaining the quality of signal. The proposed method utilizes the moving average slope of received signal strength (MAS-RSS) and signal to noise ratio (SNR) threshold in handover decision process. The MAS-RSS technique is used to observe the trend of RSS fluctuation and hence the handover can be decided adaptively with the change of the network condition. As the result, the handover rate can be reduced without causing the significant decrease of SNR average compared to the ordinary RSS based handover decision method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.