Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth, and malignant diseases like cancer, also appeared several times independently in so-called “lower” vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, Xiphophorus maculatus, offers a unique model to better understand the molecular biology of such traits. Herein we detail sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps uncovered that fish, in contrast to mammals, exhibit an unexpected evolutionary stability of chromosomes. Genes associated with viviparity show signatures of positive selection identifying new putative functional domains and rare cases of parallel evolution. We also discovered that genes implicated in cognition possess an unexpected high rate of duplicate gene retention after the teleost genome duplication suggesting a hypothesis for the evolution of the great behavioral complexity in fish, which exceeds that in amphibians and reptiles.
The biological consequences of the Deepwater Horizon oil spill are unknown, especially for resident organisms. Here, we report results from a field study tracking the effects of contaminating oil across space and time in resident killifish during the first 4 mo of the spill event. Remote sensing and analytical chemistry identified exposures, which were linked to effects in fish characterized by genome expression and associated gill immunohistochemistry, despite very low concentrations of hydrocarbons remaining in water and tissues. Divergence in genome expression coincides with contaminating oil and is consistent with genome responses that are predictive of exposure to hydrocarbon-like chemicals and indicative of physiological and reproductive impairment. Oil-contaminated waters are also associated with aberrant protein expression in gill tissues of larval and adult fish. These data suggest that heavily weathered crude oil from the spill imparts significant biological impacts in sensitive Louisiana marshes, some of which remain for over 2 mo following initial exposures.
Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges.Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a longstanding controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus. K E Y W O R D S :Hybridization, incomplete lineage sorting, premating isolation, sexually selected traits, transcriptome sequencing.
The extreme rarity of asexual vertebrates in nature is generally explained by genomic decay due to absence of meiotic recombination, thus leading to extinction of such lineages. We explore features of a vertebrate asexual genome, the Amazon molly, Poecilia formosa, and find few signs of genetic degeneration but unique genetic variability and ongoing evolution. We uncovered a substantial clonal polymorphism and as a conserved feature from its inter-specific hybrid origin a 10-fold higher heterozygosity than in the sexual parental species. These characteristics appear to be a main reason for the unpredicted fitness of this asexual vertebrate. Our data suggest that asexual vertebrate lineages are scarce not because they are at a disadvantage, but because the genomic combinations required to bypass meiosis and to make up a well-functioning hybrid genome are rarely met in nature.
Five percent of live-born human offspring will have a genetic disorder. Of these, 20% are because of germ-line de novo mutations. Several genetic diseases, such as neurofibromatosis and Duchenne muscular dystrophy, are associated with a high percentage of de novo germ-line mutations. Until recently, a direct analysis of spontaneous mutation frequencies in mammalian germ cells has been prevented by technical limitations. We have measured spontaneous mutation frequencies in a lacI transgene by using enriched populations of specific spermatogenic cell types. Similar to previously published results, we observed a lower mutation frequency for seminiferous tubule cell preparations, which contain all stages of spermatogenesis, relative to somatic tissues. We made the unexpected observation of a decline in mutation frequency during spermatogenesis, such that the mutation frequencies of type B spermatogonia and all subsequent stages of spermatogenesis are lower than the frequency for primitive type A spermatogonia. In addition, spermatogenic cells from old mice have significantly increased mutation frequencies compared with spermatogenic cells from young or middle-aged mice. Finally, the mutation frequency was observed to increase during spermiogenesis in postreplicative cell types when spermatogenic cells were obtained from old mice.From a genetic perspective, germ cells are profoundly different from somatic cells because they carry the genetic information that will direct the development of the next generation, not simply the next daughter cell. Thus, safeguarding the integrity of germ-line DNA might provide evolutionary advantages. Indeed, in mice, mutation frequencies obtained from mixed populations of germ cells are lower than for somatic tissues (1). This was demonstrated by using a transgenic system in which the bacteriophage genome carrying the lacI repressor gene and the ␣lacZ gene from the prokaryotic lac operon was introduced into the mouse genome as a transgene. DNA was recovered from genomic DNA preparations by packaging and used to infect a strain of Escherichia coli carrying a lacZ (-galactosidase) gene, but lacking a functional lacI gene. Mutation of the lacI gene renders a blue plaque on agarose containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl--D-galactopyranoside (X-gal). In contrast, other studies using a lacI transgenic mouse (2) or a lacZ transgenic mouse (3) did not report a significant difference in mutation frequencies for spermatogenic cells compared with somatic cells.Although provocative, interpretation of the results demonstrating a lower mutation frequency for male germ cells is complicated by the fact that adult seminiferous tubules contain a mixture of spermatogenic cell types encompassing all stages of spermatogenesis. Spermatogonia serve as the stem cells for spermatogenesis and undergo mitotic divisions that give rise to cells that will either retain their identity as spermatogonia to maintain the stem cell population or enter meiosis to become primary spermatocy...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.