We discuss the issue of identifiability of models for multiple dichotomous diagnostic tests in the absence of a gold standard (GS) test. Data arise as multinomial or product-multinomial counts depending upon the number of populations sampled. Models are generally posited in terms of population prevalences, test sensitivities and specificities, and test dependence terms. It is commonly believed that if the degrees of freedom in the data meet or exceed the number of parameters in a fitted model then the model is identifiable. Goodman (1974, Biometrika 61, 215-231) established that this was not the case a long time ago. We discuss currently available models for multiple tests and argue in favor of an extension of a model that was developed by Dendukuri and Joseph (2001, Biometrics 57, 158-167). Subsequently, we further develop Goodman's technique, and make geometric arguments to give further insight into the nature of models that lack identifiability. We present illustrations using simulated and real data.
Executive SummaryA movement to create a federated global patient registry containing core data and using a standardized vocabulary for as many as 7,000 rare diseases was launched at a workshop,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.