The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay -these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions.Experiments carried out over the past half century have revealed that neutrinos are found in three states, or flavors, and can transform from one flavor into another. These results indicate that each neutrino flavor state is a mixture of three different nonzero mass states, and to date offer the most compelling evidence for physics beyond the Standard Model. In a single experiment, LBNE will enable a broad exploration of the three-flavor model of neutrino physics with unprecedented detail. Chief among its potential discoveries is that of matter-antimatter asymmetries (through the mechanism of charge-parity violation) in neutrino flavor mixing -a step toward unraveling the mystery of matter generation in the early Universe. Independently, determination of the unknown neutrino mass ordering and precise measurement of neutrino mixing parameters by LBNE may reveal new fundamental symmetries of Nature.Grand Unified Theories, which attempt to describe the unification of the known forces, predict rates for proton decay that cover a range directly accessible with the next generation of large underground detectors such as LBNE's. The experiment's sensitivity to key proton decay channels will offer unique opportunities for the ground-breaking discovery of this phenomenon.Neutrinos emitted in the first few seconds of a core-collapse supernova carry with them the potential for great insight into the evolution of the Universe. LBNE's capability to collect and analyze this high-statistics neutrino signal from a supernova within our galaxy would provide a rare opportunity to peer inside a newly-formed neutron star and potentially witness the birth of a black hole.To achieve its goals, LBNE is conceived around three central components: (1) a new, highintensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a fine-grained near neutrino detector installed just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is ∼1,300 km from the neutrino source at Fermilab -a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions.With its exceptional combi...
T cells are known to play an important role in beta cell destruction in the nonobese diabetic (NOD) mouse model of Type I diabetes and islet-specific T cell clones have been demonstrated to be capable of adoptive transfer of diabetes. One important issue involves the identity of beta cell antigens that are recognized by nominally islet cell-specific T cell clones. We have previously reported that insulin-specific T cells are a predominant component of islet-specific T cells isolated from islet infiltrates of pre-diabetic NOD mice. In this report we examine six independently derived insulin-specific T cell clones established from islet infiltrates of pre-diabetic NOD mice in detail. All six clones were found to be specific to a region of the insulin molecule defined by a synthetic peptide encompassing residues 9-23 of the B chain. Despite this restricted specificity, each member of this panel exhibited a distinct receptor specificity defined either by V beta usage or antigen fine specificity. Five clones produced interferon (IFN)-gamma but not interleukin (IL)-4, placing them in the T helper type 1 (TH1)-like category whereas one clone produced both IL-4 and IFN-gamma, a characteristic of TH0 cells. All six clones were capable of either acceleration of diabetes in young NOD mice or adoptive transfer to NODscid mice. Taken together, these results suggest that spontaneously arising insulin-specific T cells participate in beta cell destruction during development of diabetes in NOD mice.
Obesity and weight gain are characterized by increased adipose tissue mass due to an increase in the size of individual adipocytes and the generation of new adipocytes. New adipocytes are believed to arise from resident adipose tissue preadipocytes and mesenchymal progenitor cells. However, it is possible that progenitor cells from other tissues, in particular BM, could also contribute to development of new adipocytes in adipose tissue. We tested this hypothesis by transplanting whole BM cells from GFP-expressing transgenic mice into wild-type C57BL/6 mice and subjecting them to a high-fat diet or treatment with the thiazolidinedione (TZD) rosiglitazone (ROSI) for several weeks. Histological examination of adipose tissue or FACS of adipocytes revealed the presence of GFP + multilocular (ML) adipocytes, whose number was significantly increased by ROSI treatment or high-fat feeding. These ML adipocytes expressed adiponectin, perilipin, fatty acid-binding protein (FABP), leptin, C/EBPα, and PPARγ but not uncoupling protein-1 (UCP-1), the CD45 hematopoietic lineage marker, or the CDllb monocyte marker. They also exhibited increased mitochondrial content. Appearance of GFP + ML adipocytes was contemporaneous with an increase in circulating levels of mesenchymal and hematopoietic progenitor cells in ROSI-treated animals. We conclude that TZDs and high-fat feeding promote the trafficking of BM-derived circulating progenitor cells to adipose tissue and their differentiation into ML adipocytes.
The presence of preexisting (memory) or de novo donor-specific HLA antibodies (DSAs) is a known barrier to successful long-term organ transplantation. Yet, despite the fact that laboratory tools and our understanding of histocompatibility have advanced significantly in recent years, the criteria to define presence of a DSA and assign a level of risk for a given DSA vary markedly between centers. A collaborative effort between the American Society for Histocompatibility and Immunogenetics and the American Society of Transplantation provided the logistical support for generating a dedicated multidisciplinary working group, which included experts in histocompatibility as well as kidney, liver, heart, and lung transplantation. The goals were to perform a critical review of biologically driven, state-of-the-art, clinical diagnostics literature and to provide clinical practice recommendations based on expert assessment of quality and strength of evidence. The results of the Sensitization in Transplantation: Assessment of Risk (STAR) meeting are summarized here, providing recommendations on the definition and utilization of HLA diagnostic testing, and a framework for clinical assessment of risk for a memory or a primary alloimmune response. The definitions, recommendations, risk framework, and highlighted gaps in knowledge are intended to spur research that will inform the next STAR Working Group meeting in 2019.
Although major histocompatibility complex (MHC) class II-restricted CD4 T cells are well appreciated for their contribution to peripheral tolerance to tissue allografts, little is known regarding MHC class I-dependent reactivity in this process. Here we show a crucial role for host MHC class I-dependent NK cell reactivity for allograft tolerance in mice induced through either costimulation blockade using CD154-specific antibody therapy or by targeting LFA-1 (also known as CD11a). Tolerance induction absolutely required host expression of MHC class I, but was independent of CD8 T cell-dependent immunity. Rather, tolerance required innate immunity involving NK1.1(+) cells, but was independent of CD1d-restricted NKT cells. Therefore, NK cells seem to be generally required for induction of tolerance to islet allografts. Additional studies indicate that CD154-specific antibody-induced allograft tolerance is perforin dependent. Notably, NK cells that are perforin competent are sufficient to restore allograft tolerance in perforin-deficient recipients. Together, these results show an obligatory role for NK cells, through perforin, for induction of tolerance to islet allografts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.