Glucose is the dominant oxidative fuel for brain, but studies have indicated that fatty acids are used by brain as well. We postulated that fatty acid oxidation in brain could contribute significantly to overall energy usage and account for non-glucose-derived energy production. [2,4,6,8-13C4]octanoate oxidation in intact rats was determined by nuclear magnetic resonance spectroscopy. We found that oxidation of 13C-octanoate in brain is avid and contributes approximately 20% to total brain oxidative energy production. Labeling patterns of glutamate and glutamine were distinct, and analysis of these metabolites indicated compartmentalized oxidation of octanoate in brain. Examination of liver and blood spectra revealed that label from 13C-octanoate was incorporated into glucose and ketones, which enabled calculation of its overall energy contribution to brain metabolism: glucose (predominantly unlabeled) and 13C-labeled octanoate can account for the entire oxidative metabolism of brain. Additionally, flux through anaplerotic pathways relative to tricarboxylic acid cycle flux (Y) was calculated to be 0.08 +/- 0.039 in brain, indicating that anaplerotic flux is significant and should be considered when assessing brain metabolism. Y was associated with the glutamine synthesis compartment, consistent with the view that anaplerotic flux occurs primarily in astrocytes.
Impaired skeletal muscle oxidative phosphorylation in patients with severe mitochondrial respiratory chain defects results in disabling exercise intolerance that is associated with a markedly blunted capacity of muscle to increase oxygen utilization in relation to circulatory and ventilatory responses that increase oxygen delivery to muscle during exercise. The range of oxidative limitation and the relationship between the severity of oxidative defects and physiological responses to exercise among a broader spectrum of mitochondrial respiratory chain defects has not been defined. We evaluated oxidative capacity and circulatory and ventilatory responses to maximal cycle exercise in 40 patients with biochemically and/or molecularly defined mitochondrial myopathy (MM) associated with varying levels of exercise tolerance, and compared responses with those in healthy sedentary individuals. In the MM patients, mean peak work capacity (0.88 +/- 0.6 W/kg) and oxygen uptake (VO(2), 16 +/- 8 ml/kg/min) were significantly lower (P < 0.01) than in controls (mean work capacity = 2.2 +/- 0.7 W/kg; VO(2) = 32 +/- 7 ml/kg/min), but the patient range was broad (0.17-3.2 W/kg; 6-47 ml/kg/min). Oxidative capacity in patients was limited by the ability of muscle to extract available oxygen from blood [mean peak systemic arteriovenous O(2) difference (a-vO(2)); patients = 7.7 +/- 3.5, range 2.7-17.6 ml/dl, controls = 15.2 +/- 2.1 ml/dl], as indicated by a linear correlation between peak VO(2) and peak systemic a-vO(2) difference (r(2) = 0.69). In the patients, the increase in cardiac output relative to VO(2) (mean DeltaQ/DeltaVO(2) = 15.0 +/- 13.6; range 3.3-73) and ventilation (mean peak VE/VO(2) = 65 +/- 24; range 21-104) were exaggerated compared with controls (mean DeltaQ/DeltaVO(2) = 5.1 +/- 0.7; VE/VO(2) = 41.2 +/- 7.4, P < 0.01). There was a negative exponential relationship between DeltaQ/DeltaVO(2) and peak systemic a-vO(2) difference (r(2) = 0.92) and between peak VE/VO(2) and systemic a-vO(2) difference (r(2) = 0.53). In patients with heteroplasmic mtDNA mutations, we found an inverse relationship between the proportion of skeletal muscle mutant mtDNA and peak extraction of available oxygen during exercise (r(2) = 0.70). We conclude that the degree of exercise intolerance in MM correlates directly with the severity of impaired muscle oxidative phosphorylation as indicated by the peak capacity for muscle oxygen extraction. Exaggerated circulatory and ventilatory responses to exercise are direct consequences of the level of impaired muscle oxidative phosphorylation and increase exponentially in relation to an increasing severity of oxidative impairment. In patients with mtDNA mutations, muscle mutation load governs mitochondrial capacity for oxidative phosphorylation and determines exercise capacity.
A myopathy with severe exercise intolerance and myoglobinuria has been described in patients from northern Sweden, with associated deficiencies of succinate dehydrogenase and aconitase in skeletal muscle. We identified the gene for the iron-sulfur cluster scaffold protein ISCU as a candidate within a region of shared homozygosity among patients with this disease. We found a single mutation in ISCU that likely strengthens a weak splice acceptor site, with consequent exon retention. A marked reduction of ISCU mRNA and mitochondrial ISCU protein in patient muscle was associated with a decrease in the iron regulatory protein IRP1 and intracellular iron overload in skeletal muscle, consistent with a muscle-specific alteration of iron homeostasis in this disease. ISCU interacts with the Friedreich ataxia gene product frataxin in iron-sulfur cluster biosynthesis. Our results therefore extend the range of known human diseases that are caused by defects in iron-sulfur cluster biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.