This paper reports on the solution structure of the (+)-cis-anti-[BP]dG adduct positioned opposite dC in a DNA oligomer duplex which provides the first experimentally based solution structure of an intercalative complex of a polycyclic aromatic hydrocarbon covalently bound to the N2 of deoxyguanosine. The combined NMR-energy minimization computation studies were undertaken on the (+)-cis-anti-[BP]dG adduct embedded in the same d(C5-[BP]G6-C7).d(G16-C17-G18) trinucleotide segment of the complementary 11-mer duplex studied previously with the stereoisomeric trans adducts. The exchangeable and nonexchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. The solution structure of the (+)-cis-anti-[BP]dG-dC 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by upper and lower bounds deduced from NOESY data sets as restraints in energy minimization computations. The benzo[a]pyrene ring of [BP]dG6 is intercalated between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs in a right-handed DNA helix. The benzylic ring is in the minor groove while the pyrenyl ring sacks with flanking dC5 and dC7 bases on the same strand. The deoxyguanosine ring of [BP]dG6 is not Watson-Crick base paired but displaced into the minor groove with its plane parallel to the helix axis and stacks over the sugar ring of dC5. The dC17 base on the partner strand is displaced from the center of the helix toward the major groove by the intercalated benzo[a]pyrene ring. This intercalative structure of the (+)-cis-anti-[BP]dG-dC 11-mer duplex exhibits several unusually shifted proton resonances which can be readily accounted for by the ring current contributions of the deoxyguanosine and pyrenyl rings of the [BP]dG6 adduct. Several phosphorus resonances are shifted to low and high field of the unperturbed phosphorus spectral region and have been assigned to internucleotide phosphates centered about the [BP]dG6 modification site. These studies define the changes in the helix at the central trinucleotide segment needed to generate the intercalation site for the covalently bound (+)-cis-anti-[BP]dG adduct.(ABSTRACT TRUNCATED AT 400 WORDS)
Polycyclic aromatic hydrocarbons (PAH) are environmental pollutants and suspected human lung carcinogens. In patients with non-small cell lung carcinoma, differential display shows that aldo-keto reductase (AKR1C) transcripts are dramatically overexpressed. However, whether AKR1C isoforms contribute to the carcinogenic process and oxidize potent PAH trans-dihydrodiols (proximate carcinogens) to reactive and redox active o-quinones is unknown; nor is it known whether these reactions occur in human lungs. We now show that four homogeneous human recombinant aldoketo reductases (AKR1C1-AKR1C4) are regioselective and oxidize only the relevant non-K region trans-dihydrodiols. However, these enzymes are not stereo-selective, since they oxidized 100% of these racemic substrates. The highest utilization ratios (V max /K m ) were observed for some of the most potent proximate carcinogens known (e.g. 7,12-dimethylbenz[a]anthracene-3,4-diol (DMBA-3,4-diol) and benzo[g]chrysene-11,12-diol). In vitro, DMBA-3,4-diol was oxidized by AKR1C4 to the highly reactive 7,12-dimethylbenz[a]anthracene-3,4-dione (DMBA-3,4-dione), which was trapped in situ as its mono-and bis-thioether conjugates, which arise from the sequential 1,6-and 1,4-Michael addition of thiol nucleophiles. Human multiple tissue expression array analysis showed that AKR1C isoform transcripts were highly expressed in the human lung carcinoma cell line A549. Isoform-specific reverse transcriptase-PCR showed that AKR1C1, AKR1C2, and AKR1C3 transcripts were all expressed. Western blot analysis and functional assays confirmed high expression of AKR1C protein and enzyme activity in these lung cells. A549 cell lysates were found to convert DMBA-3,4-diol to the corresponding o-quinone. In trapping experiments, LC/MS analysis identified peaks in the cell lysates that corresponded to the synthetically prepared mono-and bis-thioether conjugates of DMBA-3,4-dione. This quinone is one of the most electrophilic and redox-active o-quinones produced by AKRs. Its unique ability to form bis-thioether conjugates parallels the formation of bis-and tris-glutathionyl conjugates of hydroquinone, which display end organ toxicity. The ability to measure DMBA-3,4-dione formation in A549 cells implicates the AKR pathway in the metabolic activation of PAH in human lung. PAHs1 are ubiquitous environmental pollutants and are tobacco carcinogens implicated in the causation of human lung cancer. PAHs are metabolically activated to exert their deleterious effects. Three principal pathways have been proposed for PAH activation and are shown for the representative compound BP (Fig. 1).The first pathway involves the formation of radical cations catalyzed by P450 peroxidases (1). Radical cations form N-7 guanine-depurinating DNA adducts, a process that can lead to G to T transversions in ras (2, 3).In the second pathway, PAHs are activated by members of the CYP superfamily to form an arene oxide on the terminal benzo-ring; subsequent hydrolysis by epoxide hydrolase results in the formation of non-K reg...
Benzo[c]phenanthrene diol epoxide can covalently bind to the exocyclic amino group of deoxyadenosine to generate [BPh]dA adducts where the polycyclic aromatic hydrocarbon is attached to the major groove edge of DNA. This paper reports on NMR-energy minimization structural studies of the (+)-trans-anti-[BPh]dA adduct positioned opposite dT in the sequence context d(C5-[BPh]A6-C7).d-(G16-T17-G18) at the 11-mer duplex level. The exchangeable and nonexchangeable protons of the benzo[c]phenanthrenyl moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. The solution structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by upper and lower bounds deduced from NOESY data sets as restraints in energy minimization computations. The covalently attached benzo[c]phenanthrene ring intercalates to the 5'-side of the [BPh]-dA6 lesion site without disruption of the flanking Watson-Crick dC5.dG18 and [BPh]dA6.dT17 base pairs. The observed buckling of the intercalation cavity reflects the selective overlap of the intercalated phenanthrenyl ring with dT17 and dG18 bases on the unmodified strand. The structure provides new insights into how a polycyclic aromatic hydrocarbon covalently attached to the major groove edge of deoxyadenosine can still unidirectionally intercalate into the helix without disruption of the modified base pair. Our study establishes that among the contributing factors are a propeller-twisted [BPh]dA6.dT17 base pair, displacement of the carcinogen-DNA linkage bond from the plane of the dA6 base, the specific pucker adopted by the benzylic ring, and the propeller-like nonplanar geometry for the aromatic phenanthrenyl ring system. Our combined experimental-computational studies to date have now identified three structural motifs adopted by covalent polycyclic aromatic hydrocarbon-DNA adducts with their distribution determined by the chiral characteristics of individual stereoisomers and by whether the covalent adducts are generated at the minor or the major groove edge of the helix.
The highly tumorigenic isomer (+)-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE] and its non-tumorigenic enantiomer (-)-anti-BPDE are known to react predominantly with the exocyclic amino group (N2) of deoxyguanine in DNA and to form adducts of different conformations. The spectroscopic characteristics (UV absorbance, fluorescence and circular dichroism) of stereochemically defined (+)-trans, (-)-trans, (+)-cis and (-)-cis d(5'-CACATGBPDETACAC) adducts in the single-stranded form, or complexed with the complementary strand d(5'-GTGTACATGTG) in aqueous solution, were investigated. The spectroscopic characteristics of the double-stranded d(5'-CACATGBPDETACAC).d(5'-GTGTACATGTG) adducts can be interpreted in terms of two types of conformations. In site I-type conformations, there is an approximately 10 nm red shift in the absorption maxima, which is attributed to significant pyrenyl residue-base interactions; in site II-type adducts, the red shift is only approximately 2-3 nm, and the pyrene ring system is located at external, solvent-exposed binding sites. The spectroscopic characteristics of the BPDE-modified duplexes are of the site II type for the (+)- and (-)-trans, and of the site I type for the (+)- and (-)-cis adducts. In adducts derived from the binding of (+)-anti-BPDE to poly(dG-dC).(dG-dC) and poly(dG).(dC), the trans/cis BPDE-N2-dG adduct ratio is 6 +/- 1; in the case of (-)-anti-BPDE this ratio is only 0.4 +/- 0.1 and 0.6 +/- 0.15 in poly(dG-dC).(dG-dC) and poly(dG).(dC) respectively. The spectroscopic properties of these BPDE-modified polynucleotide adducts are consistent with those of the BPDE-modified oligonucleotide complexes; the cis adducts are correlated with site I adduct conformations, while the trans adducts are of the site II type. The correlations between adduct characteristics and biological activities of the two BPDE enantiomers are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.