Interpretation of a discontinuity in the sense of verticality at large body tilt. J Neurophysiol 91: 2205-2214, 2004. First published December 10, 2003 10.1152/jn.00804.2003. Results of earlier spatial-orientation studies focusing on the sense of verticality have emphasized an intriguing paradox. Despite evidence that nearly veridical signals for gravicentric head orientation and egocentric visual stimulus orientation are available, roll-tilted subjects err in the direction of the long body axis when adjusting a visual line to vertical in darkness (Aubert effect). This has led to the suggestion that a central egocentric bias signal with fixed strength and direction acts to pull the perceived vertical to the subjects' zenith (M-model). In the present study, the subjective visual vertical (SVV) was tested in six human subjects, across the entire 360°range. For comparison, body-tilt estimates from four subjects where collected in a separate series of experiments. For absolute tilts up to ϳ135°, SVV responses showed a gradually increasing Aubert effect that could not be attributed to errors in perceived body tilt but was nicely in line with the M-model. At larger absolute tilts, SVV errors abruptly reversed sign, now showing a pattern concordant with errors in body-tilt estimates but incompatible with the M-model. These results suggest that, in the normal working range, the perception of external space and the perception of body posture are based on different processing of body-tilt signals. Beyond this range, both spatial-orientation tasks seem to rely mainly on a common tilt signal.
A striking feature of visual verticality estimates in the dark is undercompensation for lateral body tilt. Earlier studies and models suggest that this so-called Aubert (A) effect increases gradually to around 130 degrees tilt and then decays smoothly on approaching the inverted position. By contrast, we recently found an abrupt transition toward errors of opposite sign (E effect) when body tilt exceeded 135 degrees . The present study was undertaken to clarify the nature of this transition. We tested the subjective visual vertical in stationary roll-tilted human subjects using various rotation paradigms and testing methods. Cluster analysis identified two clearly separate response modes (A or E effect), present in all conditions, which dominated in different but overlapping tilt ranges. Within the overlap zone, the subjective vertical appeared bistable on repeated testing with responses in both categories. The tilt range where bistability occurred depended on the direction of the preceding rotation (hysteresis). The overlap zone shifted to a smaller tilt angle when testing was preceded by a rotation through the inverted position, compared with short opposite rotations from upright. We discuss the possibility that the A-E transition reflects a reference shift from compensating line settings for the head deviation from upright to basing them on the tilt deviation of the feet from upright. In this scenario, both the A and the E effect reflect tilt undercompensation. To explain the hysteresis and the bistability, we propose that the transition is triggered when perceived body tilt, a signal with known noise and hysteresis properties, crosses a fixed threshold.
The effect of crosstalk in multi-view autostereoscopic 3D displays on perceived image quality is assessed in two experiments. The first experiment shows that preference decreases with increasing crosstalk, but not as strong as expected. The second experiment shows that the crosstalk visibility threshold is higher than found in earlier studies.
The image quality circle is a commonly accepted framework to model the relation between the technology variables of a display and the resulting image quality. 3D-TV systems, however, go beyond the concept of image quality. Research has shown that, although 3D scenes are clearly more appreciated by subjects, the concept 'image quality' does not take this added value of depth into account. Concepts as 'naturalness' and 'viewing experience' have turned out to be more useful when assessing the overall performance of 3D displays. In this paper, experiments are described that test 'perceived depth', 'perceived image quality' and 'perceived naturalness' in images with different levels of blur and different depth levels. Results show that naturalness incorporates both blur level as well as depth level, while image quality does not include depth level. These results confirm that image quality is not a good measure to assess the overall performance of 3D displays. Naturalness is a more promising concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.