Objective: To evaluate the effectiveness of a new bedside pressure mapping technology for patient repositioning in a long-term acute care hospital. Approach: Bedside caregivers repositioned patients to the best of their abilities, using pillows and positioning aids without the visual feedback from a continuous bedside pressure mapping (CBPM) system. Once positioned, caregivers were shown the image from the CBPM system and allowed to make further adjustments to the patient position. Data from the CBPM device, in the form of visual screenshots and peak pressure values, were obtained after each repositioning phase. Caregivers provided feedback on repositioning with and without the CBPM system. Results: Screenshots displayed lower pressures when the visual feedback from the CBPM systems was utilized by caregivers. Lower peak pressure measurements were also evident when caregivers utilized the image from the CBPM systems. Overall, caregivers felt the system enabled more effective patient positioning and increased the quality of care they provided their patients. Innovation: This is the first bedside pressure mapping device to be continuously used in a clinical setting to provide caregivers and patients visual, instant feedback of pressure, thereby enhancing repositioning and offloading practices. Conclusion: With the visual feedback from the pressure mapping systems, caregivers were able to more effectively reposition patients, decreasing exposure to damaging high pressures.
Abstract-Due to the effects of erosion, tectonism and burial, impact structures are often obscured or destroyed. Geophysical methods are increasingly being used in detecting the signatures of impact structures. While gravity lows associated with impact structures are well understood, associated magnetic anomaly lows are not. In this study, drill cores from three Canadian impact structures were analyzed for rock magnetic properties and mineralogy, in order to explain the magnetic anomaly lows associated with these structures. Samples from the drill cores were cut and measured for anisotropy of magnetic susceptibility (AMS) and natural remanent magnetization (NRM) parameters. Drill cores from the twin impact craters of the Clearwater structure exhibited different NRM characteristics, and samples from their respective drill cores were subject to demagnetization by alternating field and thermal techniques. The differenct: noted in their NRM characteristics was attributed to the acquisition of a viscous remanent magnetization (VRM) at depth in Clearwater East.At all three structures, both magnetic susceptibilities and remanent magnetizatioc s are well below regional values in impact generated breccias, melt rocks, shocked crystalline rocks, and in postimpact sedimentary infill. The processes of brecciation, alteration, shock, and infill by nonmagnetic szdiments contribute to the development of the magnetic lows. However, a significant contribution to the observed magnetic anomalies was found, by first-order forward modelling, to arise from basement rocks beneath the impact structures. This zone of reduced magnetization may be caused by the partial demagnetization of magnetite by the impact-induced transient stress wave traveling away from the point of impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.