Brain dysfunction is the most important sequelae of the fragile X (FMR-1) mutation, the most common heritable cause of developmental disability. Using magnetic resonance imaging (MRI) and quantitative morphometry, we have compared the neuroanatomy of 51 individuals with an FMR-1 mutation with matched controls and showed that subjects with an FMR-1 mutation have increased volume of the caudate nucleus and, in males, the lateral ventricle. Both caudate and lateral ventricular volumes are correlated with IQ. Caudate volume is also correlated with the methylation status of the FMR-1 gene. Neuroanatomical differences between two monozygotic twins with an FMR-1 mutation who are discordant for mental retardation are localized to the cerebellum, lateral ventricles and subcortical nuclei. These findings suggest that the FMR-1 mutation causing the fragile X syndrome leads to observable changes in neuroanatomy that may be relevant to the neurodevelopmental disability and behavioural problems observed in affected individuals.
Thirty girls with Turner syndrome (TuS) were compared with 30 individually age-matched controls on volumetric brain measures derived from magnetic resonance imaging and on measures of psychological functioning. As expected, girls with TuS performed more poorly on visual-spatial and intellectual measures relative to controls, and were rated by their parents as having more significant problems in attention and social behaviors. Although no group differences in overall cerebral or subcortical volumes were observed, the regional distribution of gray and white matter differed across groups in both right and left parietal regions. Differences in total tissue volume ratios were seen for both right and left parietal areas, but differences in individual gray and white matter ratios were seen exclusively in the right parietal regions. In general, girls with TuS had a smaller proportion of tissue (gray and white) within the right and left parietal regions, and a larger proportion of tissue within the right inferior parietal-occipital region relative to girls in the control group. These data suggest a potentially important role for X chromosome genes and/or sex steroids in the development and specialization of brain structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.