A multidisciplinary team assessed five patients who alleged chronic medically unexplained multiorgan system symptoms described by idiopathic environmental intolerance allegedly triggered by exposure to solvents used in membrane roofing repair work on an office building. The event precipitated an incident of mass psychogenic illness (MPI). Treating physicians diagnosed irritant-associated vocal cord dysfunction (IVCD) and reactive airways disease syndrome (RADS) resulting from exposure. The authors conducted medical, psychological, and industrial hygiene evaluations. Air monitoring data for total volatile organic compounds obtained during the 2-day exposure period, measurements of emissions during membrane roofing repair at a similar site, mathematical modeling of air contaminant concentrations, and injection of tracer gas into the incident building revealed exposure levels well below those doses anticipated to cause clinical symptoms. There was no objective medical evidence validating symptoms. Review of the medical records indicated that the video laryngoscopy data, pulmonary function tests, and medical examinations relied upon by the treating physicians were inconsistent with published criteria for IVCD and RADS. Psychological evaluation identified defensiveness and self-serving misrepresentations of exaggerated health concerns associated with somatization and malingering. Each case had personality traits associated with at least one personality disorder. Social histories identified premorbid life events and stressors associated with distress. This is the first study to assess psychological predisposition, social interaction among the plaintiffs, and iatrogenic reinforcement of beliefs by diagnoses of pseudo-disorders associated with patient misrepresentation of exaggerated health concerns in an incident of MPI.
Detector tubes for toluene were cut to produce a nominal 0.5 cm orifice above the indicator material, and exposed to known vapor concentrations. The time needed to reach a pre-determined stain length by simple diffusion was measured. Calibration charts were prepared for time versus concentration for a 1 mm stain, as well as for various stain lengths. Tests were performed to determine the effect of increasing the orifice length and of diffusion through the glass wool plug. Each of these parameters resulted in less reliable concentration measurements than tubes of relatively shorter orifice length having no glass wool plug. Diffusion theory was used to develop theoretical calibration charts for comparison with experimental results, with the former underestimating necessary for appearance of the experimentally observed stains. The use of detector tubes having an orifice length of 0.5 cm as passive dosimeters is shown to be highly feasible based on experimental results.
Asphalt shingle removal (tear-off) from roofs is a major job task for an estimated 174,000 roofers in the United States. However, a literature search showed that there are no published studies that characterize worker inhalation exposures to asphalt particulates during shingle tear-off. To begin to fill this gap, the present study of inhalation exposures of roofers performing asphalt shingle tear-off was undertaken. The airborne agents of interest were total particulate matter (TP) and organic particulates measured as the benzene-soluble fraction (BSF) of total particulate. The study's objectives were to measure the personal breathing zone (PBZ) exposures of roofing tear-off workers to BSF and TP; and to assess whether these PBZ exposures are different from ambient levels. Task-based PBZ samples (typical duration 1-5 hours) were collected during asphalt shingle tear-off from roofs near Houston, Texas and Denver, Colorado. Samples were analyzed for TP and BSF using National Institute of Occupational Safety and Health (NIOSH) Method 5042. As controls, area samples (typical duration 3-6 hours) were collected on the ground near the perimeter of the tear-off project Because of the presence of significant sources of inorganic particulates in the work environment, emphasis was placed on the BSF data. No BSF exposure higher than 0.25 mg/m3 was observed, and 69% of the PBZ samples were below the limit of detection (LOD). Due to unforeseen confounding, however, statistical comparisons of on-the-roof PBZ samples with on-the-ground area samples posed some special challenges. This confounding grew out of the interaction of three factors: statistical censoring from the left; the strong inverse correlation between LOD concentration and sampling duration; and variation in sampling durations between on-the-ground area samples and on-the-roof PBZ samples. A general linear model analysis of variance (GLM-ANOVA) was applied to help address the confounding. The results of this analysis indicate that personal sample BSF results were not statistically significantly different from the background/area samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.