The master circadian clock, located in the mammalian suprachiasmatic nuclei (SCN), generates and coordinates circadian rhythmicity, i.e., internal organization of physiological and behavioral rhythms that cycle with a near 24-h period. Light is the most powerful synchronizer of the SCN. Although other nonphotic cues also have the potential to influence the circadian clock, their effects can be masked by photic cues. The purpose of this study was to investigate the ability of scheduled feeding to entrain the SCN in the absence of photic cues in four lines of house mouse (Mus domesticus). Mice were initially housed in 12:12-h light/dark cycle with ad libitum access to food for 6 h during the light period followed by 4 -6 mo of constant dark under the same feeding schedule. Wheel running behavior suggested and circadian PER2 protein expression profiles in the SCN confirmed entrainment of the master circadian clock to the onset of food availability in 100% (49/49) of the line 2 mice in contrast to only 4% (1/24) in line 3 mice. Mice from line 1 and line 4 showed intermediate levels of entrainment, 57% (8/14) and 39% (7/18), respectively. The predictability of entrainment vs. nonentrainment in line 2 and line 3 and the novel entrainment process provide a powerful tool with which to further elucidate mechanisms involved in entrainment of the SCN by scheduled feeding. nonphotic entrainment; scheduled feeding; suprachiasmatic; PER2; wheel running activity THE SUPRACHIASMATIC NUCLEI (SCN) of the anterior hypothalamus are the master circadian (near 24 h) clock in mammals, entraining clocks located in other brain regions and peripheral organs (26,33). The clock mechanism consists of molecular feedback loops containing positive and negative elements, i.e., clock gene products, that cycle with a near 24-h period in the absence of external signals (26). Light, the strongest natural zeitgeber or timing cue, shifts the clock so that it can entrain to the external light/dark (LD) cycle (28). Scheduled food availability is one of several nonphotic periodic signals (24, 25) that have been shown to entrain behavioral rhythms (17,19,22). Although entrainment of the master circadian clock was inferred in these studies (17,19,22), it was not confirmed at the level of the SCN (12).When feeding is dissociated from the normal activity period by allowing animals to eat only during their inactive period, two behavioral activity components result. One component entrains to and is in anticipation of onset of food availability, i.e., food anticipatory activity (FAA), which is controlled by an SCN-independent food-entrainable clock. The other is the animal's normal nocturnal or light-entrainable activity (LEA) component, which is controlled by the SCN when food access is not limited and has been presumed to be controlled by the SCN when access to food is temporally limited (8). The likelihood of the free-running LEA component being entrained by scheduled daily feeding in constant dark (DD) is species dependent. Hamsters typically show behavior...
Background. The people living in Arctic and Subarctic environments have adapted to cold temperatures, short growing seasons, and low precipitation, but their traditional ways are now changing due to increased contact with Western society. The rapid alteration of circumpolar cultures has led to generational changes in diet from traditional foods to the processed groceries common in modern stores. Objectives. Develop a link between changing traditional diets and mental health that may have substantial consequences for circumpolar peoples. Methods. Review of English language literature pertaining to the northern circumpolar environments of the world that consist of the Arctic and Subarctic areas. Electronic resources such as ISI Web of Science and PubMed were utilized, using keywords such as arctic, circumpolar, diet, omega-3 fatty acids, mental health, seasonal affective disorder, and suicide. In addition, we used the cited references of obtained articles and the extensive University of Alaska Fairbanks library collections to identify additional publications that were not available from the electronic resources. The years covered were not restricted to any particular period, although 83% of the sources were published in the last 16 years. Conclusion. The change in traditional diets has already led to increased health problems, such as obesity, cardiovascular disease, and diabetes, while the mental health of circumpolar peoples has also declined substantially during the same time period. The decline in mental health is characterized by increased rates of depression, seasonal affective disorder, anxiety, and suicide, that now often occur at higher rates than in lower-latitude populations. Studies in non-circumpolar peoples have shown that diet can have profound effects on neuronal and brain development, function, and health. Therefore, we hypothesize that diet is an important risk factor for mental health in circumpolar peoples.
Arctic and subarctic environments are exposed to extreme light: dark (LD) regimes, including periods of constant light (LL) and constant dark (DD) and large daily changes in day length, but very little is known about circadian rhythms of mammals at high latitudes. The authors investigated the circadian rhythms of a subarctic population of northern red-backed voles (Clethrionomys rutilus). Both wild-caught and third-generation laboratory-bred animals showed predominantly nocturnal patterns of wheel running when exposed to a 16:8 LD cycle. In LL and DD conditions, animals displayed large phenotypic variation in circadian rhythms. Compared to wheel-running rhythms under a 16:8 LD cycle, the robustness of circadian activity rhythms decreased among all animals tested in LL and DD (i.e., decreased chi-squared periodogram waveform amplitude). A large segment of the population became noncircadian (60% in DD, 72% in LL) within 8 weeks of exposure to constant lighting conditions, of which the majority became ultradian, with a few individuals becoming arrhythmic, indicating highly labile circadian organization. Wild-caught and laboratory-bred animals that remained circadian in wheel running displayed free-running periods between 23.3 and 24.8 h. A phase-response curve to light pulses in DD showed significant phase delays at circadian times 12 and 15, indicating the capacity to entrain to rapidly changing day lengths at high latitudes. Whether this phenotypic variation in circadian organization, with circadian, ultradian, and arrhythmic wheel-running activity patterns in constant lighting conditions, is a novel adaptation to life in the arctic remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.