Using the polymerase chain reaction, we have isolated numerous rat and human cDNAs of which the deduced amino acid sequences are highly homologous to the sequences of the extracellular domain of cadherins. The entire putative coding sequences for two human proteins defined by two of these cDNAs have been determined. The overall structure of these molecules is very similar to that of classic cadherins, but they have some unique features. The extracellular domains are composed of six or seven subdomains that are very similar to those of cadherins, but have characteristic properties. The cytoplasmic domains, on the other hand, have no significant homology with those of classic cadherins. Since various cDNAs with almost identical features were obtained also from Xenopus, Drosophila and Caenorhabditis elegans, it appears that similar molecules are expressed in a variety of organisms. We have tentatively named these proteins protocadherins. They are highly expressed in brain and their expression appears to be developmentally regulated. The proteins expressed from the two full‐length cDNAs in L cells were approximately 170 or 150 kDa in size, and were localized mainly at cell‐cell contact sites. Moreover, the transfectants showed cell adhesion activity.
The peptide growth factor apelin is the high affinity ligand for the G-protein-coupled receptor APJ. During embryonic development of mouse and frog, APJ receptor is expressed at high levels in endothelial precursor cells and in nascent vascular structures. Characterization of Xenopus apelin shows that the sequence of the bioactive region of the peptide is perfectly conserved between frogs and mammals. Embryonic expression studies indicate that apelin is expressed in, or immediately adjacent to, a subset of the developing vascular structures, particularly the intersegmental vessels. Experimental inhibition of either apelin or APJ expression, using antisense morpholino oligos, results in elimination or disruption of intersegmental vessels in a majority of embryos. In gain of function experiments, apelin peptide is a potent angiogenic factor when tested using two in vivo angiogenesis assays, the frog embryo and the chicken chorioallantoic membrane. Furthermore, studies using the mouse brain microvascular cell line bEnd.3 show that apelin acts as a mitogenic, chemotactic and anti-apoptotic agent for endothelial cells in culture. Finally, we show that, similar to a number of other angiogenic factors, expression of the apelin gene is increased under conditions of hypoxia. Taken together, these studies indicate that apelin is required for normal vascular development in the frog embryo and has properties consistent with a role during normal and pathological angiogenesis.
BackgroundThe microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood.Methodology/Principal FindingsEpigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control.Conclusions/SignificanceWe report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.
Damage to the vessel wall is a signal for endothelial migration and replication and for platelet release at the site of injury. Addition of transforming growth factor-beta (TGF-beta) purified from platelets to growing aortic endothelial cells inhibited [3H]thymidine incorporation in a concentration-dependent manner. A transient inhibition of DNA synthesis was also observed in response to wounding; cell migration and replication are inhibited during the first 24 hours after wounding. By 48 hours after wounding both TGF-beta-treated and -untreated cultures showed similar responses. Flow microfluorimetric analysis of cell cycle distribution indicated that after 24 hours of exposure to TGF-beta the cells were blocked from entering S phase, and the fraction of cells in G1 was increased. The inhibition of the initiation of regeneration by TGF-beta could allow time for recruitment of smooth muscle cells into the site of injury by other platelet components.
This review tries to provide a general, and very speculative, view of growth control mechanisms that may be common to the development of blood vessels and to pathological processes including cell proliferation. From a developmental point of view, vascular growth is most likely to include local autocrine or paracrine mechanisms that permit the two cells of the vessel wall to grow, organize into the characteristic tubular and layered structures of the vessel wall, and eventually achieve a return to quiescence. The "real" mechanisms controlling growth in vivo are difficult to ascertain from studies in culture. For example, a large list of angiogenesis molecules must be able to generate endothelial replication, but in culture many of these molecules are inhibitory for each endothelial replication. Similarly, in culture, we have a long list of smooth muscle mitogens, but none of these have as of yet been proven to control smooth muscle growth in vivo. Endothelial growth control has been attributed to the presence of membrane molecules able to inhibit endothelial replication and to the actions of soluble growth factors and their receptors. Unfortunately for the former hypothesis we still lack specific molecules with the properties of contact inhibition of replication. The data discussed here, however, suggest that modulation of expression or function of cell-cell adhesive molecules could be critical both to morphogenic changes and to mitogenesis by release of cells from cell-cell contact. Moreover, our data and data from other laboratories suggest that angiogenic factors, including the HBGFs and TGF-beta, may function in angiogenesis by altering cell-cell and cell-cell substrate interactions rather than via a primary effect on cell replication. This view of angiogenesis is consistent with the absence of a mitogenic effect of some angiogenic factors. Although endothelial cell replication is obviously necessary to angiogenesis, the lack of mitogenic effect of some factors suggests a need for a more general explanation of the actions of angiogenic factors. Endothelial injury may be interrelated with smooth muscle growth. The simplest possibility is that a failure of the endothelial cell barrier function, due either to denudation or an increase in adhesivity for leukocytes, would permit access of platelets or leukocytes to the vessel wall. These extrinsic cells, in turn, would stimulate smooth muscle cell replication by release of growth factors. The second possibility is that the endothelial cell may itself release growth factors into the vessel wall.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.