We present a novel approach to the detection of weak magnetic fields that
takes advantage of recently developed techniques for the coherent control of
solid-state electron spin quantum bits. Specifically, we investigate a magnetic
sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We
discuss two important applications of this technique: a nanoscale magnetometer
that could potentially detect precession of single nuclear spins and an optical
magnetic field imager combining spatial resolution ranging from micrometers to
millimeters with a sensitivity approaching few femtotesla/Hz$^{1/2}$.Comment: 29 pages, 4 figure
Detection of weak magnetic fields with nanoscale spatial resolution is an outstanding problem in the biological and physical sciences. For example, at a distance of 10 nm, the spin of a single electron produces a magnetic field of about 1 muT, and the corresponding field from a single proton is a few nanoteslas. A sensor able to detect such magnetic fields with nanometre spatial resolution would enable powerful applications, ranging from the detection of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules to readout of classical or quantum bits of information encoded in an electron or nuclear spin memory. Here we experimentally demonstrate an approach to such nanoscale magnetic sensing, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature. Using an ultra-pure diamond sample, we achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging. In addition, we demonstrate a sensitivity of 0.5 muT Hz(-1/2) for a diamond nanocrystal with a diameter of 30 nm.
We report an experiment in which a light pulse is decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand. We accomplish this storage of light by dynamically reducing the group velocity of the light pulse to zero, so that the coherent excitation of the light is reversibly mapped into a collective Zeeman (spin) coherence of the Rb vapor.
Solid-state spin systems such as nitrogen-vacancy colour centres in diamond are promising for applications of quantum information, sensing and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time (T 2 ) of nitrogen-vacancy centres compared with previous measurements: T 2 E0.6 s at 77 K. We employed dynamical decoupling pulse sequences to suppress nitrogen-vacancy spin decoherence, and found that T 2 is limited to approximately half of the longitudinal spin relaxation time over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of nitrogen-vacancy spins, and thus could advance quantum sensing, enable squeezing and many-body entanglement, and open a path to simulating driven, interactiondominated quantum many-body Hamiltonians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.