Groups of Japanese and American scientists, supported by international collaborators, have worked for many years to ensure the accuracy of the radiation dosimetry used in studies of health effects in the Japanese atomic bomb survivors. Reliable dosimetric models and systems are especially critical to epidemiologic studies of this population because of their importance in the development of worldwide radiation protection standards. While dosimetry systems, such as Dosimetry System 1986 (DS86) and Dosimetry System 2002 (DS02), have improved, the research groups that developed them were unable to propose or confirm an additional contribution by residual radiation to the survivor's total body dose. In recognition of the need for an up-to-date review of residual radiation exposures in Hiroshima and Nagasaki, a half-day technical session was held for reports on newer studies at the 59 th Annual HPS Meeting in 2014 in Baltimore, MD. A day-and-a-half workshop was also held to provide time for detailed discussion of the newer studies and to evaluate their potential use in clarifying the residual radiation exposure to atomic bomb survivors at Hiroshima and Nagasaki. The process also involved a re-examination of very early surveys of radioisotope emissions from ground surfaces at Hiroshima and Nagasaki and early reports of health effects. New insights were reported on the potential contribution to residual radiation from neutron-activated radionuclides in the airburst's dust stem and pedestal and in unlofted soil, as well as from fission products and weapon debris from the nuclear cloud. However, disparate views remain concerning the actual residual radiation doses received by the atomic bomb survivors at different distances from the hypocenter. The workshop discussion indicated that measurements made using thermal luminescence and optically stimulated luminescence, like earlier measurements, especially in very thin layers of the samples, could be expanded to detect possible radiation exposures to beta particles and to determine their significance plus the extent of the various residual radiation areas at Hiroshima and Nagasaki. Other suggestions for future residual radiation studies are included in this workshop report.
In response to requests from the Department of Veterans Affairs, a methodology was developed to assess the external dose accrued by personnel in the vicinity of beta radiation sources of nuclear weapon origin. This methodology has been applied in support of the Nuclear Test Personnel Review (NTPR) Program implemented by the Department of Defense. As required by the Code of Federal Regulations (Title 32, Part 218 and Title 38, Part 3.311), the NTPR Program must evaluate radiological hazards from nuclear testing activities that include alpha particle, beta particle, neutron, and photon emissions from radionuclides. Prior to the development of this methodology, only photon and neutron radiations were explicitly quantified for external dose assessments in this program. Alpha radiation of external origin presents no risk for biological effects due to external dose potential to skin tissue because of the particle's very limited range. However, beta particles are sufficiently penetrating to have such potential. Methods are provided to quantify ionizing radiation doses to the skin and lens of the eye from beta radiation sources of nuclear weapon origin located external to the body. This formulation allows the estimation of beta dose from a film badge (gamma) dose or from an equivalent reconstructed gamma dose.
There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.