The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with From the Rheumatoid Arthritis Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association.
Summary Background Findings of small studies have suggested that short treatments with anti-CD3 monoclonal antibodies that are mutated to reduce Fc receptor binding preserve β-cell function and decrease insulin needs in patients with recent-onset type 1 diabetes. In this phase 3 trial, we assessed the safety and efficacy of one such antibody, teplizumab. Methods In this 2-year trial, patients aged 8–35 years who had been diagnosed with type 1 diabetes for 12 weeks or fewer were enrolled and treated at 83 clinical centres in North America, Europe, Israel, and India. Participants were allocated (2:1:1:1 ratio) by an interactive telephone system, according to computer-generated block randomisation, to receive one of three regimens of teplizumab infusions (14-day full dose, 14-day low dose, or 6-day full dose) or placebo at baseline and at 26 weeks. The Protégé study is still underway, and patients and study staff remain masked through to study closure. The primary composite outcome was the percentage of patients with insulin use of less than 0.5 U/kg per day and glycated haemoglobin A1c (HbA1C) of less than 6.5% at 1 year. Analyses included all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, number NCT00385697. Findings 763 patients were screened, of whom 516 were randomised to receive 14-day full-dose teplizumab (n=209), 14-day low-dose teplizumab (n=102), 6-day full-dose teplizumab (n=106), or placebo (n=99). Two patients in the 14-day full-dose group and one patient in the placebo group did not start treatment, so 513 patients were eligible for efficacy analyses. The primary outcome did not differ between groups at 1 year: 19·8% (41/207) in the 14-day full-dose group; 13·7% (14/102) in the 14-day low-dose group; 20·8% (22/106) in the 6-day full-dose group; and 20·4% (20/98) in the placebo group. 5% (19/415) of patients in the teplizumab groups were not taking insulin at 1 year, compared with no patients in the placebo group at 1 year (p=0·03). Across the four study groups, similar proportions of patients had adverse events (414/417 [99%] in the teplizumab groups vs 98/99 [99%] in the placebo group) and serious adverse events (42/417 [10%] vs 9/99 [9%]). The most common clinical adverse event in the teplizumab groups was rash (220/417 [53%] vs 20/99 [20%] in the placebo group). Interpretation Findings of exploratory analyses suggest that future studies of immunotherapeutic intervention with teplizumab might have increased success in prevention of a decline in β-cell function (measured by C-peptide) and provision of glycaemic control at reduced doses of insulin if they target patients early after diagnosis of diabetes and children.
Inbred Lewis (LEW/N) female rats develop an arthritis in response to group A streptococcal cell wall peptidoglycan polysaccharide (SCW), which mimics human rheumatoid arthritis. Histocompatible Fischer (F344/N) rats do not develop arthritis in response to the same SCW stimulus. To evaluate this difference in inflammatory reactivity, we examined the function of the hypothalamic-pituitary-adrenal (HPA) axis and its ability to modulate the development of the inflammatory response in LEW/N and F344/N rats. We have found that, in contrast to F344/N rats, LEW/N rats had markedly impaired plasma corticotropin and corticosterone responses to SCW, recombinant human interleukin la, the serotonin agonist quipazine, and synthetic rat/human corticotropin-releasing hormone. LEW/N rats also had smaller adrenal glands and larger thymuses. Replacement doses of dexamethasone decreased the severity of LEW/N rats' SCWinduced arthritis. Conversely, treatment of F344/N rats with the glucocorticoid receptor antagonist RU 486 or the serotonin antagonist LY53857 was associated with development of severe inflammatory disease, including arthritis, in response to SCW. These findings support the concept that susceptibility of LEW/N rats to SCW arthritis is related to defective HPA axis responsiveness to inflammatory and other stress mediators and that resistance of F344/N rats to SCW arthritis is regulated by an intact HPA axis-immune system feedback loop.A single intraperitoneal injection of group A streptococcal cell wall fragments (peptidoglycan group-specific polysaccharide; SCW) into euthymic LEW/N female rats induces severe, rapid onset, acute arthritis, followed by a chronic proliferative and erosive arthritis. Athymic LEW.rnu/rnu rats develop the rapid-onset acute-phase arthritis, but the chronic disease is significantly blunted, indicating that the late-, but not the early-, onset disease is thymus dependent. In contrast, histocompatible euthymic and athymic F344 rats develop only minimal, early-onset, swelling of the hind paws that rapidly subsides. These differences in disease pattern and severity are paralleled by the intensity of class II major histocompatibility antigen (Ia) expression in synovial tissues.The presence of a strain difference in the early-onset, thymic-independent phase of SCW arthritis in athymic LEW.rnu/rnu versus F344.rnu/rnu rats indicates that the thymic-independent phase of arthritis is genetically regulated and that the regulating factor or factors are operative very early in the disease (1). The mechanisms involved in this regulation are unknown.Corticosteroids are both potent endogenous anti-inflammatory and immunosuppressive agents and potent endogenous down-regulators of Ia expression (2-4). Corticosterone is released early in the course of inflammation, possibly through stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by inflammatory mediators such as endotoxin and interleukin 1 (IL-1) and may be important in maintaining the normal feedback loop between the immune system and the c...
Glucocorticoids are pleiotropic hormones that at pharmacologic doses prevent or suppress inflammation and other immunologically mediated processes. At the molecular level, glucocorticoids form complexes with specific receptors that migrate to the nucleus where they interact with selective regulatory sites within DNA; this results in positive and negative modulation of several genes involved in inflammatory and immune responses. At the cellular level, glucocorticoids inhibit the access of leukocytes to inflammatory sites; interfere with the functions of leukocytes, endothelial cells, and fibroblasts; and suppress the production and the effects of humoral factors involved in the inflammatory response. Clinically, several modes of glucocorticoid administration are used, depending on the disease process, the organ involved, and the extent of involvement. High doses of daily glucocorticoids are usually required in patients with severe diseases involving major organs, whereas alternate-day regimens may be used in patients with less aggressive diseases. Intravenous glucocorticoids (pulse therapy) are frequently used to initiate therapy in patients with rapidly progressive, immunologically mediated diseases. The benefits of glucocorticoid therapy can easily be offset by severe side effects; even with the greatest care, side effects may occur. Moreover, for certain complications (for example, infection diathesis, peptic ulcer, osteoporosis, avascular necrosis, and atherosclerosis), other drug toxicities and pathogenic factors overlap with glucocorticoid effects. Minimizing the incidence and severity of glucocorticoid-related side effects requires carefully decreasing the dose; using adjunctive disease-modifying immunosuppressive and anti-inflammatory agents; and taking general preventive measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.