The first structure of an aldehyde dehydrogenase (ALDH) is described at 2.6 A resolution. Each subunit of the dimeric enzyme contains an NAD-binding domain, a catalytic domain and a bridging domain. At the interface of these domains is a 15 A long funnel-shaped passage with a 6 x 12 A opening leading to a putative catalytic pocket. A new mode of NAD binding, which differs substantially from the classic beta-alpha-beta binding mode associated with the 'Rossmann fold', is observed which we term the beta-alpha,beta mode. Sequence comparisons of the class 3 ALDH with other ALDHs indicate a similar polypeptide fold, novel NAD-binding mode and catalytic site for this family. A mechanism for enzymatic specificity and activity is postulated.
Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs--1, 2, and 3--have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism. Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression. This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms. The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may an important determinant of the effectiveness of certain chemotherapeutic agents.(ABSTRACT TRUNCATED AT 400 WORDS)
One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase~ALDH! extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 102" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.Keywords: aldehyde dehydrogenase~ec 1.2.1.3!; multiple sequence alignment; protein family Aldehyde dehydrogenases~ALDHs! catalyze the oxidation of aldehydes to their corresponding carboxylic acids and occur throughout all phyla. Many disparate aldehydes are ubiquitous in nature and most are toxic at low levels because of their chemical reactivity. Thus, levels of metabolic-intermediate aldehydes must be carefully regulated. For this, most well-studied organisms are known to have several distinct ALDHs, which take part in a variety of physiological roles. Some ALDHs are highly specific for a very limited range of substrates while others show a broad substrate specificity. All ALDHs require either NAD or NADP as a cofactor reviewed, Lindahl, 1992; Yoshida et al., 1998!.Within a decade of the first ALDH sequence, alignment of 16 of the then most divergent ALDH sequences~Hempel et al., 1993! supported a common, conserved ALDH structure and suggested residues with important structural and functional roles, similar to findings in other enzyme families~Jörnvall, 1977;Brändén & Tooze, 1991;Creighton, 1993 Just recently the first two ALDH tertiary structures have been reported~Liu et al., 1997; Steinmetz et al., 1997!. Since many forthcoming studies on ALDHs will depend on dissection of these molecular structures, it is useful to "take a step back" and examine the ALDH extended family as a whole, allowing information based on the known tertiary structures to be more readily be applied to other more diverse ALDHs. In...
Sequences of 16 NAD and/or NADP-linked aldehyde oxidoreductases are aligned, including representative examples of all aldehyde dehydrogenase forms with wide substrate preferences as well as additional types with distinct specificities for certain metabolic aldehyde intermediates, particularly semialdehydes, yielding pairwise identities from 15 to 83%. Eleven of 23 invariant residues are glycine and three are proline, indicating evolutionary restraint against alteration of peptide chain-bending points. Additionally, another 66 positions show high conservation of residue type, mostly hydrophobic residues. Ten of these occur in predicted P-strands, suggesting important interior-packing interactions.A single invariant cysteine residue is found, further supporting its catalytic role. A previously identified essential glutamic acid residue is conserved in all but methyl malonyl semialdehyde dehydrogenase, which may relate to formation by that enzyme of a CoA ester as a product rather than a free carboxylate species. Earlier, similarity to a GXGXXG segment expected in the NAD-binding site was noted from alignments with fewer sequences. The same region continues to be indicated, although now only the first glycine residue is strictly conserved and the second (usually threonine) is not present at all, suggesting greater variance in coenzyme-binding interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.