Aim To test the hypothesis that continental drift drives diversification of organisms through vicariance, we selected a group of primitive arachnids which originated before the break‐up of Pangaea and currently inhabits all major landmasses with the exception of Antarctica, but lacks the ability to disperse across oceanic barriers. Location Major continental temperate to tropical landmasses (North America, South America, Eurasia, Africa, Australia) and continental islands (Bioko, Borneo, Japan, Java, New Caledonia, New Guinea, New Zealand, Sri Lanka, Sulawesi, Sumatra). Methods Five kb of sequence data from five gene regions for more than 100 cyphophthalmid exemplars were analysed phylogenetically using different methods, including direct optimization under parsimony and maximum likelihood under a broad set of analytical parameters. We also used geological calibration points to estimate gross phylogenetic time divergences. Results Our analyses show that all families except the Laurasian Sironidae are monophyletic and adhere to clear biogeographical patterns. Pettalidae is restricted to temperate Gondwana, Neogoveidae to tropical Gondwana, Stylocellidae to Southeast Asia, and Troglosironidae to New Caledonia. Relationships between the families inhabiting these landmasses indicate that New Caledonia is related to tropical Gondwana instead of to the Australian portion of temperate Gondwana. The results also concur with a Gondwanan origin of Florida, as supported by modern geological data. Main conclusions By studying a group of organisms with not only an ancient origin, low vagility and restricted habitats, but also a present global distribution, we have been able to test biogeographical hypotheses at a scale rarely attempted. Our results strongly support the presence of a circum‐Antarctic clade of formerly temperate Gondwanan species, a clade restricted to tropical Gondwana and a Southeast Asian clade that originated from a series of early Gondwanan terranes that rifted off northwards from the Devonian to the Triassic and accreted to tropical Laurasia. The relationships among the Laurasian species remain more obscure.
We investigate the phylogeny, biogeography, time of origin and diversification, ancestral area reconstruction and large‐scale distributional patterns of an ancient group of arachnids, the harvestman suborder Cyphophthalmi. Analysis of molecular and morphological data allow us to propose a new classification system for the group; Pettalidae constitutes the infraorder Scopulophthalmi new clade, sister group to all other families, which are divided into the infraorders Sternophthalmi new clade and Boreophthalmi new clade. Sternophthalmi includes the families Troglosironidae, Ogoveidae, and Neogoveidae; Boreophthalmi includes Stylocellidae and Sironidae, the latter family of questionable monophyly. The internal resolution of each family is discussed and traced back to its geological time origin, as well as to its original landmass, using methods for estimating divergence times and ancestral area reconstruction. The origin of Cyphophthalmi can be traced back to the Carboniferous, whereas the diversification time of most families ranges between the Carboniferous and the Jurassic, with the exception of Troglosironidae, whose current diversity originates in the Cretaceous/Tertiary. Ancestral area reconstruction is ambiguous in most cases. Sternophthalmi is traced back to an ancestral land mass that contained New Caledonia and West Africa in the Permian, whereas the ancestral landmass for Neogoveidae included the south‐eastern USA and West Africa, dating back to the Triassic. For Pettalidae, most results include South Africa, or a combination of South Africa with the Australian plate of New Zealand or Sri Lanka, as the most likely ancestral landmass, back in the Jurassic. Stylocellidae is reconstructed to the Thai‐Malay Penisula during the Jurassic. Combination of the molecular and morphological data results in a hypothesis for all the cyphophthalmid genera, although the limited data available for some taxa represented only in the morphological partition negatively affects the phylogenetic reconstruction by decreasing nodal support in most clades. However, it resolves the position of many monotypic genera not available for molecular analysis, such as Iberosiro, Odontosiro, Speleosiro, Managotria or Marwe, although it does not place Shearogovea or Ankaratra within any existing family. The biogeographical data show a strong correlation between relatedness and formerly adjacent landmasses, and oceanic dispersal does not need to be postulated to explain disjunct distributions, especially when considering the time of divergence. The data also allow testing of the hypotheses of the supposed total submersion of New Zealand and New Caledonia, clearly falsifying submersion of the former, although the data cannot reject the latter. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 92–130.
Aim To develop a comprehensive explanation for the biological diversity of Southeast Asia, especially in the Wallacea and Sundaland regions. This study focuses on a group of arachnids, mite harvestmen, which are thought to be an extremely old group of endemic animals that have been present in the region since most of its land supposedly formed part of the northern rim of the supercontinent Gondwana. Location Eastern Himalayas, Thai‐Malay Peninsula, Sumatra, Borneo, Java, Sulawesi, and New Guinea. Methods Approximately 5.6 kb of sequence data were obtained from 110 South‐east Asian Cyphophthalmi specimens. Phylogenetic analyses were conducted under a variety of methods and analytical parameters, and the optimal tree was dated using calibration points derived from fossil data. Event based and paralogy‐free subtree biogeographical analyses were conducted. Results The Southeast Asian family Stylocellidae was recovered as monophyletic, arising on what is now the Thai‐Malay Peninsula and diversifying into three main clades. One clade (Meghalaya, here formally placed in Stylocellidae) expanded north as far as the eastern Himalayas, a second clade entered Borneo and later expanded back across the Sundaland Peninsula to Sumatra, and a third clade expanded out of Borneo into the entire lower part of Sundaland. Molecular dating suggested that Stylocellidae separated from other Cyphophthalmi 295 Ma and began diversifying 258 Ma, and the lineage that inhabits mostly Borneo today began diversifying between 175 and 150 Ma. Main conclusions The topology and molecular dating of our phylogenetic hypothesis suggest that Stylocellidae originated on Gondwana, arrived in Southeast Asia via the Cimmerian palaeocontinent, and subsequently diversified north, then south. Their present distribution in the Indo‐Malay Archipelago is explained largely by a diversification over the Sundaland Peninsula before western Sulawesi departed and the peninsula was extensively inundated.
BackgroundIncreased resistance by Plasmodium falciparum parasites led to the withdrawal of the antimalarial drugs chloroquine and sulphadoxine-pyrimethamine in Ethiopia. Since 2004 artemether-lumefantrine has served to treat uncomplicated P. falciparum malaria. However, increasing reports on delayed parasite clearance to artemisinin opens up a new challenge in anti-malarial therapy. With the complete withdrawal of CQ for the treatment of Plasmodium falciparum malaria, this study assessed the evolution of CQ resistance by investigating the prevalence of mutant alleles in the pfmdr1 and pfcrt genes in P. falciparum and pvmdr1 gene in Plasmodium vivax in Southern and Eastern Ethiopia.MethodsOf the 1,416 febrile patients attending primary health facilities in Southern Ethiopia, 329 febrile patients positive for P. falciparum or P. vivax were recruited. Similarly of the 1,304 febrile patients from Eastern Ethiopia, 81 febrile patients positive for P. falciparum or P. vivax were included in the study. Of the 410 finger prick blood samples collected from malaria patients, we used direct sequencing to investigate the prevalence of mutations in pfcrt and pfmdr1. This included determining the gene copy number in pfmdr1 in 195 P. falciparum clinical isolates, and mutations in the pvmdr1 locus in 215 P. vivax clinical isolates.ResultsThe pfcrt K76 CQ-sensitive allele was observed in 84.1% of the investigated P.falciparum clinical isolates. The pfcrt double mutations (K76T and C72S) were observed less than 3%. The pfcrt SVMNT haplotype was also found to be present in clinical isolates from Ethiopia. The pfcrt CVMNK-sensitive haplotypes were frequently observed (95.9%). The pfmdr1 mutation N86Y was observed only in 14.9% compared to 85.1% of the clinical isolates that carried sensitive alleles. Also, the sensitive pfmdr1 Y184 allele was more common, in 94.9% of clinical isolates. None of the investigated P. falciparum clinical isolates carried S1034C, N1042D and D1246Y pfmdr1 polymorphisms. All investigated P. falciparum clinical isolates from Southern and Eastern Ethiopia carried only a single copy of the mutant pfmdr1 gene.ConclusionThe study reports for the first time the return of chloroquine sensitive P. falciparum in Ethiopia. These findings support the rationale for the use of CQ-based combination drugs as a possible future alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.