Transcription factors (TF) are the elements, which regulate gene expression. Regulatory function of TFs play an important role in plant biological processes and mechanisms. They may interconnect with other transcription factors or functional genes to modulate their expression in response to an internal/external factor like life cycle stage, growth, development and stress. Arabidopsis is the well-known and the most used model organism. Transcription factors of three Arabidopsis species including A. halleri, A. lyrata and A. thaliana, were compared. basic/helix-loop-helix (bHLH) with 220 TFs was the most abundant family among three Arabidopsis species while MYB and MYB related families considering as a whole group were more than bHLH with 308 TFs. No STERILE APETALA (SAP) TF homolog was found for A.halleri. The common transcription factors among three species were 4,172 grouped in 1,212 clusters. The species-specific clustered TFs were 12, 30 and 58 for A. halleri, A. lyrata and A. thaliana respectively. Eight hundred ninety two single-copy gene clusters those have one gene copy from each species, i.e. 2,676 genes, were listed. Four hundred forty five TF singletons were not clustered and are unique among three species. For clustered TF belonging to each species, GO terms and SwissProt hits showed that A. halleri has two species-specific TFs involved in heavy metal response including Zinc finger protein AZF2 and two-component response regulator ARR11 while for A. lyrata specific TFs are involved in stress response and plant development. A. thaliana specific clustered TFs work on plant flower development and acclimation.
Abstract-Omics era has opened a new window to biology. Genomics and transcriptomics are two well-known fields by which plant selection and breeding are fulfilled more easily and accurately. They provide useful information about genes, transcripts, their functions those are the principal data for other subsequent approaches. Reference genomes of various plants are available and facilitate genome-based studies. The complex of genomic, transcriptomic data and the findings from variant methods like QTLs (quantitative trait loci), SNPs (single nucleotide polymorphism), CNVs (copy number variant), resequencing, GBS (genome-by-sequencing) are extremely important for plant selection in terms of price and time. The new workflows are routinely using different approaches and mixing them based on the genomic/transcriptomic information in their subsequent steps. They, however, are validated during the whole process toward screening genotypes possessing agronomically important desired trait. SNP-Seq presented hereinafter is a new approach for analyzing plants toward selection and screening by SNP sequencing in various genotypes simultaneously. It can accelerate the cycle of plant selection from genotypes to phenotypes in a reverse engineering way.Keywords:-Genomics, Omics, Plant Selection, Plant Improvement, TranscriptomicsResumen-La era Omica ha abierto una nueva ventana a la biología. La genómica y la transcriptómica son dos campos conocidos, con los cuales, la selección y el mejoramiento de plantas se cumplen con mayor facilidad y precisión. Proporcionan informaciónútil sobre los genes, las transcripciones, sus funciones y sirven como datos primordiales para otros enfoques posteriores. Los genomas de referencia de varias plantas han sido secuenciados, y están disponibles, facilitando así el acceso a informaciónómica indispensable para llevar a cabo estudios basados en estos mismos genomas. El total de datos genómicos, transcriptómicos y los hallazgos de métodos variantes que van desde QTL (rasgo cuantitativo), PSN (polimorfismo de un solo nucleótido), NCV (número de copias variante), GBS (genoma por secuencia) son extremadamente importantes para la selección y el mejoramiento de plantas en términos de precio y tiempo. Los nuevos flujos de trabajo utilizan diferentes enfoques basados en la información genómica / transcriptómica en pasos posteriores mezclándolos y se validan durante todo el proceso para seleccionar genotipos que posean un rasgo deseado agronómicamente importante. SNP-Seq, que se presenta en este artículo, es un nuevo enfoque para analizar las plantas hacia la selección y la detección mediante secuenciación de SNP en varios genotipos simultáneamente. Este proceso puede acelerar el ciclo de selección de plantas desde los genotipos a los fenotipos en una forma de ingeniería inversa.
El contenedor forestal determina las características morfo-funcionales de los brinzales y en general, la calidad de las plantas producida. Disponer de una larga raíz principal en los brinzales producidos puede determinar su supervivencia en campo en regiones con fuertes limitaciones hídricas. La transferencia de tecnología constituye una vía para llevar a la sociedad los resultados de las investigaciones. Este estudio muestra los resultados preliminares de un proyecto de transferencia de tecnología en el Parque Natural Sierra Calderona (Castellón, España). El objetivo del presente trabajo fue determinar los efectos de la utilización de un contenedor profundo sobre el crecimiento y distribución de biomasa de Quercus suber durante su cultivo en vivero; así como evaluar durante el primer año su adaptación al campo en alcornocales degradados del Parque Natural. Durante un año, brinzales de Quercus suber L. fueron cultivados en vivero en dos tipos de contenedores CCS-18 (corto, 18 cm profundidad) y CCL-30 (largo, 30 cm profundidad). Posteriormente fueron trasplantados a tres parcelas experimentales de matorral degradado. Los resultados al finalizar el cultivo e vivero indicaron diferencias morfológicas (altura del tallo y biomasa) entre los brinzales cultivados en contenedor profundo (CCL-30) y en contenedor deprofundidad estándar (CCS-18). Tras un primer año en plantación (resultadopreliminar), la supervivencia fue alta (87,5%), aunque no se observaron diferencias entre tratamientos.
The cocoa crop (Theobroma cacao) is constantly affected by diseases that can considerably compromise its production, among them moniliasis (Moniliophthora roreri). The search for alternative control measures to reduce its presence in the field is imperative; therefore, the objective of this study is to evaluate the effect of Euphorbia hirta extract on M. roreri, a cocoa pathogen. The study consisted of two phases: in vitro and in vivo in the field. The in vitro experiment was established under a completely randomized design with treatments using different concentrations of the extract (1, 2, 3, 4, 5, 6, 6, 7, 8, and 9%) to modify the culture medium and control (T0). Spore germination and mycelial growth of M. roreri were evaluated. The results revealed that milky extract (E. hirta) at a concentration of 9% v/v inhibited 100% of spore germination and 79.78% of mycelial growth. In the field trial, a completely randomized block design was used where three treatments were applied to the fruit (less than three months old) and a control: E. hirta extract with concentrations of 10% (T1) and 5% (T2), a chemical control based on copper oxide (T3) and the control (T0).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.