BackgroundEffective vaccines to combat malaria are urgently needed, but have proved elusive in the absence of validated correlates of natural immunity. Repeated blood stage infections induce antibodies considered to be the main arbiters of protection from pathology, but their essential functions have remained speculative.Methodology/Principal FindingsThis study evaluated antibody dependent respiratory burst (ADRB) activity in polymorphonuclear neutrophils (PMN) induced by Plasmodium falciparum merozoites and antibodies in the sera of two different African endemic populations, and investigated its association with naturally acquired clinical protection. Respiratory bursts by freshly isolated PMN were quantified by chemiluminescence readout in the presence of isoluminol, which preferentially detects extra-cellular reactive oxygen species (ROS). Using a standardized, high throughput protocol, 230 sera were analyzed from individuals of all age groups living in meso- (Ndiop) or holo-endemic (Dielmo) Senegalese villages, and enrolled in a cross-sectional prospective study with intensive follow-up. Statistical significance was determined using non-parametric tests and Poisson regression models. The most important finding was that PMN ADRB activity was correlated with acquired clinical protection from malaria in both high and low transmission areas (P = 0.006 and 0.036 respectively). Strikingly, individuals in Dielmo with dichotomized high ADRB indexes were seventeen fold less susceptible to malaria attacks (P = 0.006). Complementary results showed that ADRB activity was (i) dependent on intact merozoites and IgG opsonins, but not parasitized erythrocytes, or complement, (ii) correlated with merozoite specific cytophilic IgG1 and IgG3 antibody titers (P<0.001 for both), and (iii) stronger in antisera from a holo-endemic compared to a meso-endemic site (P = 0.002), and reduced in asymptomatic carriers (P<0.001).Conclusions/SignificanceThis work presents the first clearly demonstrated functional antibody immune correlate of clinical protection from Plasmodium falciparum malaria, and begs the question regarding the importance of ADRB by PMN for immune protection against malaria in vivo.
We recently developed an efficient strategy based on a fully synthetic dendrimeric carbohydrate display (multiple antigenic glycopeptide; MAG) to induce anticarbohydrate antibody responses for therapeutic vaccination against cancer. Here, we show the superior efficacy of the MAG strategy over the traditional keyhole limpet hemocyanin glycoconjugate to elicit an anticarbohydrate IgG response against the tumorassociated Tn antigen. We highlight the influence of the aglyconic carrier elements of such a tumor antigen for their recognition by the immune system. Finally, we additionally developed the MAG system by introducing promiscuous HLA-restricted T-helper epitopes and performed its immunological evaluation in nonhuman primates. MAG:Tn vaccines induced in all of the animals strong tumor-specific anti-Tn antibodies that can mediate antibody-dependent cell cytotoxicity against human tumor. Therefore, the preclinical evaluation of the MAG:Tn vaccine demonstrates that it represents a safe and highly promising immunotherapeutic molecularly defined tool for targeting breast, colon, and prostate cancers that express the carbohydrate Tn antigen.
Antibodies to Plasmodium falciparum C-terminal merozoite surface protein 1 (PfMSP-1p19) have been correlated with protection against malaria, but this association may apply to many merozoite antigens. To address this question, we conducted a prospective serological study of 205 individuals in an active 5-month clinical survey in a Senegalese village where malaria is mesoendemic. Before the 2000 rainy season, antibody responses specific for recombinant baculovirus PfMSP-1p19 or merozoite extracts were compared with 2 in vitro functional antibody activities (inhibition of parasite grown and erythrocyte invasion) and with the number of clinical episodes during 5 months of follow-up. Antibody levels to PfMSP-1p19 and merozoite extract correlated, respectively, with erythrocyte invasion and parasite growth inhibition. Although antibody levels to both antigen preparations were associated with age, functional parameters were not. High levels of anti-PfMSP-1p19 immunoglobulin G were associated with reduced malaria in an age-adjusted multivariate analysis. These results support baculovirus PfMSP-1p19-based vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.