Chlordecone (kepone or CLD) was formerly used in French West Indies as an insecticide. Despite its formal ban in 1993, high levels of this pesticide are still found in soils. As such, sequestering matrices like biochars or activated carbons (ACs) may successfully decrease the bioavailability of halogenated compounds like CLD when added to contaminated soils. The present study intends (i) to produce contrasted sequestering matrices in order to (ii) assess their respective efficiency to reduce CLD environmental availability. Hence, the work was designed following two experimental steps. The first one consisted at producing different sequestering media (biochars and ACs) via pyrolysis and distinct activation processes, using two lignocellulosic precursors (raw biomass): oak wood (Quercus ilex) and coconut shell (Cocos nucifera). The chemical activation was carried out with phosphoric acid while physical activation was done with carbon dioxide and steam. In the second step, the CLD environmental availability was assessed either in an OECD artificial soil or in an Antillean contaminated nitisol (i.e. 2.1 µg CLD per g of soil Dry Matter, DM), both amended with 5wt% of biochar or 5wt% of AC.
Since 1972, the French departments of Guadeloupe and Martinique have intensively used organochlorinated pesticides such as chlordecone (CLD) and hexachlorocyclohexane (HCH) isomers to prevent the proliferation of banana weevil (Cosmopolite sordidus). These molecules are stable in the environment, leading to a continuous contamination of soils, water, and food chain in the banana-producing areas. In these polluted areas, water treatment plants are equipped with activated carbon (AC) filters. In order to improve treatment of CLD-contaminated waters by AC, CLD adsorption and desorption kinetic studies are carried out using different ACs produced from sugar cane bagasse as adsorbents and subsequent CLD degradation is performed using reduced vitamin B12 (VB12). A GC-MS method for CLD quantification is as well optimized. This study shows that bagasse ACs are able to capture the pollutant, leading to a CLD concentration decrease from 1 to 73 μg L, with an adsorption capacity of 162 μg mg. Adsorption capacity increase with the temperature indicates an endothermic process. Polar solvents favor CLD desorption from ACs, suggesting hydrogen bonding between CLD and surface groups of ACs, the best solvent for chemical desorption being ethanol. Subsequent degradation of CLD in ethanol is performed using vitamin B12 reduced by either 1,4-dithiotreitol (DTT) or zerovalent zinc, leading to 90% of CLD removal and to the molecule cage structure opening for formation of a pentachloroindene intermediate product, characterized by GC MS/MS. A pathway for pentachloroindene formation from CLD is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.