A complex of highly conserved proteins consisting of NusB, NusE, NusA, and NusG is required for robust expression of rRNA in Escherichia coli. This complex is proposed to prevent Rho-dependent transcription termination by a process known as “antitermination.” The mechanism of this antitermination in rRNA is poorly understood but requires association of NusB and NusE with a specific RNA sequence in rRNA known as BoxA. Here, we identify a novel member of the rRNA antitermination machinery: the inositol monophosphatase SuhB. We show that SuhB associates with elongating RNA polymerase (RNAP) at rRNA in a NusB-dependent manner. Although we show that SuhB is required for BoxA-mediated antitermination in a reporter system, our data indicate that the major function of the NusB/E/A/G/SuhB complex is not to prevent Rho-dependent termination of rRNA but rather to promote correct rRNA maturation. This occurs through formation of a SuhB-mediated loop between NusB/E/BoxA and RNAP/NusA/G. Thus, we have reassigned the function of these proteins at rRNA and identified another key player in this complex.
Predictable latency on flash storage is a long-pursuit goal, yet, unpredictability stays due to the unavoidable disturbance from many well-known SSD internal activities. To combat this issue, the recent NVMe IO Determinism (IOD) interface advocates host-level controls to SSD internal management tasks. While promising, challenges remain on how to exploit it for truly predictable performance. We present IODA , an I/O deterministic flash array design built on top of small but powerful extensions to the IOD interface for easy deployment. IODA exploits data redundancy in the context of IOD for a strong latency predictability contract. In IODA , SSDs are expected to quickly fail an I/O on purpose to allow predictable I/Os through proactive data reconstruction. In the case of concurrent internal operations, IODA introduces busy remaining time exposure and predictable-latency-window formulation to guarantee predictable data reconstructions. Overall, IODA only adds 5 new fields to the NVMe interface and a small modification in the flash firmware, while keeping most of the complexity in the host OS. Our evaluation shows that IODA improves the 95–99.99þ latencies by up to 75 ×. IODA is also the nearest to the ideal, no disturbance case compared to 7 state-of-the-art preemption, suspension, GC coordination, partitioning, tiny-tail flash controller, prediction, and proactive approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.