In this study, the authors investigate the effect of GCM spatial resolution on modeled precipitation over Europe. The objectives of the analysis are to determine whether climate models have sufficient spatial resolution to have an accurate representation of the storm tracks that affect precipitation. They investigate if there is a significant statistical difference in modeled precipitation between a medium-resolution (~112-km horizontal resolution) and a high-resolution (~25-km horizontal resolution) version of a state-of-the-art AGCM (EC-EARTH), if either model resolution gives a better representation of precipitation in the current climate, and what processes are responsible for the differences in modeled precipitation. The authors find that the high-resolution model gives a more accurate representation of northern and central European winter precipitation. The medium-resolution model has a larger positive bias in precipitation in most of the northern half of Europe. Storm tracks are better simulated in the high-resolution model, providing for a more accurate horizontal moisture transport and moisture convergence. Using a decomposition of the precipitation difference between the medium- and high-resolution model in a part related and a part unrelated to a difference in the distribution of vertical atmospheric velocity, the authors find that the smaller precipitation bias in central and northern Europe is largely unrelated to a difference in vertical velocity distribution. The smaller precipitation amount in these areas is in agreement with less moisture transport over this area in the high-resolution model. In areas with orography the change in vertical velocity distribution is found to be more important.
In this study, we investigate the change in multi-day precipitation extremes in late winter in Europe using observations and climate models. The objectives of the analysis are to determine whether climate models can accurately reproduce observed trends and, if not, to find the causes of the difference in trends.Similarly to an earlier finding for mean precipitation trends, and despite a lower signal to noise ratio, climate models fail to reproduce the increase in extremes in much of northern Europe: the model simulations do not cover the observed trend in large parts of this area. A dipole in the sea-level pressure trend over continental Europe causes positive trends in extremes in northern Europe and negative trends in the Iberian Peninsula. Climate models have a much weaker pressure trend dipole and as a result a much weaker (extreme) precipitation response.The inability of climate models to correctly simulate observed changes in atmospheric circulation is also primarily responsible for the underestimation of trends in the Rhine basin. When it has been adjusted for the circulation trend mismatch, the observed trend is well within the spread of the climate model simulations. Therefore, it is important that we improve our understanding of circulation changes, in particular related to the cause of the apparent mismatch between observed and modeled circulation trends over the past century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.