Orotate phosphoribosyltransferase (OPRTase, EC 2.4.2.10) catalyzes the Mg2+-dependent condensation of orotic acid (OA) with PRPP (5-alpha-d-phosphorylribose 1-diphosphate) to yield diphosphate (PPi) and the nucleotide OMP (orotidine 5'-monophosphate). We have determined the structures of three forms of Saccharomyces cerevisiae OPRTase representing different structural and enzymatic intermediates. The structures include the apoenzyme (2.35 A resolution); a ternary complex of enzyme, Mg2+-PRPP, and OA (1.74 A resolution); and the binary product complex of enzyme with OMP (1.89 A resolution). While the overall structure of the S. cerevisiae OPRTase is similar to that of the Salmonella typhimurium enzyme, as judged by comparison of the two apoenzymes, large conformational transitions occur proceeding from the apoenzyme structure to those of the substrate and product complexes. Comparison of these structures reveals a rotation of the upper hood domain onto the bound ligands by an average of 19.5 degrees in the OMP structure and an average of 24.6 degrees in the OA/Mg2+-PRPP ternary complex. As expected, the conserved loop, composed of residues 104-116, moves extensively and adopts a single stable conformation during the catalytic cycle in order to sequester the substrates from bulk solvent in the ternary complex. The OA and Mg2+-PRPP molecules bound in the ternary complex are oriented for proper attack of the N1 atom of OA onto the C1 atom of the ribose ring. This orientation of substrates, combined with the positioning of the flexible loop, provides a clear picture of a catalytically poised reaction complex for type I phosphoribosyltransferases. The structural asymmetry present in these structures, as well as that found in a recent structure of the S. typhimurium enzyme, combined with the closure of the flexible loop from one subunit into the active site of the opposing subunit in the ternary complex is consistent with the kinetic data [McClard, R. W., et al. (2006) Biochemistry 45, 5330-5342] that demonstrate induced nonequivalence and cooperativity of OPRTase.
UMP synthase, or multienzyme pyr-5,6 (orotate phosphoribosyltransferase:orotidine monophosphate decarboxylase), has been purified from Ehrlich ascites carcinoma to apparent homogeneity. The purification was achieved by the use of 5-[2-[N-(2-aminoethyl)carbamyl]ethyl]-6-azauridine 5'-monophosphate-agarose and phosphocellulose affinity columns linked in tandem by a flow dialysis system. The purified protein has amolecular weight of approximately 51500 as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Both enzyme activities cosediment with an S20,w value of 3.7 S, which corresponds to a molecular weight of about 50000. Two-dimensional electrophoresis of UMP synthase shows that the protein exists as two isomeric forms with isoelectric points of 5.85 (major form) and 5.65 (minor form). Both forms have the same molecular weight of 51500 and contain both active centers. These results clearly show that the last two enzyme activities of de novo UMP biosynthesis occur on a single polypeptide chain of approximately 51500 daltons and that this polypeptide exists in at least two isomeric forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.