Cacao farmers use macerated Theobroma cacao pod husks as biofertilizer for restoration of environmentally important soil elements, i.e., N, P, K, Na, Mg, and Ca. The increasing popularity of this organic material for soil management justifies to experimentally ascertaining that its application does not produce environmental or human health risks. We therefore applied a battery of biological tests to assess possible health risks related to the extract of fermented cacao pod husks [CHE]. Minimal inhibitory concentration for selected bacteria and fungi was established and an antiviral assay (equine herpes virus -EHV-1) and insecticide assay (Aedes aegypti larvae), to observe possible environmental impact. Toxicity tests used Artemia salina, hemolytic activity and cytotoxicity were tested using HT-29 e Vero cells, respectively. Genotoxicity and anti-genotoxic activity was tested in the comet assay of leukocytes and a selection of Saccharomyces cerevisiae mutants allowed look for a possible interference of CHE with defined metabolic pathways. None of these established tests used to define toxicity and genotoxicity of chemical compounds indicated that CHE contained substances that would pose such risks. Our safety assessment on bacteria and yeasts, virus, insect larvae, and human leukocytes [3-(4,5-di-methylazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and comet assay] thus indicated that macerated cocoa pod husk can be safely used as biofertilizer.
Garcinia mangostana, popularly known as “mangosteen fruit,” originates from Southeast Asia and came to Brazil about 80 years ago where it mainly grows in the states of Pará and Bahia. Although mangosteen or its extracts have been used for ages in Asian folk medicine, data on its potential genotoxicity is missing. We, therefore, evaluated genotoxicity/mutagenicity of hydroethanolic mangosteen extract [HEGM, 10 to 640 μg/mL] in established test assays (Comet assay, micronucleus test, and Salmonella/microsome test). In the Comet assay, HEGM-exposed human leukocytes showed no DNA damage. No significant HEGM-induced mutation in TA98 and TA100 strains of Salmonella typhimurium (with or without metabolic activation) was observed and HEGM-exposed human lymphocytes had no increase of micronuclei. However, HEGM suggested exposure concentration-dependent antigenotoxic potential in leukocytes and antioxidant potential in the yeast Saccharomyces cerevisiae. HEGM preloading effectively protected against H2O2-induced DNA damage in leukocytes (Comet assay). Preloading of yeast with HEGM for up to 4 h significantly protected the cells from lethality of chronic H2O2-exposure, as expressed in better survival. Absence of genotoxicity and demonstration of an antigenotoxic and antioxidant potential suggest that HEGM or some substances contained in it may hold promise for pharmaceutical or nutraceutical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.