The most commonly used Parkinson's disease (PD) treatment is the replacement of dopamine by its levodopa precursor (l-dopa). Monoamine oxidase-B (MAO-B) and catechol-o-methyl transferase (COMT) are enzymes involved in the metabolism and regulation of dopamine availability. In our study we investigated the possible relation among selected single-nucleotide polymorphisms (SNPs) in the MAO-B (rs1799836) and COMT (rs4680) genes and the therapeutic response to levodopa (l-dopa). A total of 162 Brazilian patients from the Pro-Parkinson service of Clinics Hospital of Pernambuco diagnosed with sporadic PD and treated with levodopa were enrolled. PD patients were stratified into 2 groups according to the daily levodopa dose. MAO-B and COMT SNP genotyping was conducted by polymerase chain reaction-restriction fragment length polymorphism. After multivariate analysis, we observed a significant difference between PD groups for the following variables: sex (P = .02), longer duration of disease (P = .02), longer levodopa therapy duration (P = .01), younger onset of PD (P = .01), and use of COMT inhibitor (P = .02). We observed that patients carrying MAO-B (rs1799836) A and AA genotypes and COMT (rs4680) LL genotype suffered more frequently from levodopa-induced-dyskinesia. In addition, we found an increased risk of 2.84-fold for male individuals carrying the MAO-B G allele to be treated with higher doses of levodopa (P = .04). We concluded that before beginning PD pharmacological treatment, it is important to consider the genetic variants of the MAO-B and COMT genes and the sex, reinforcing the evidence that sexual dimorphism in the genes related to dopamine metabolism might affect PD treatment.
The scientific community still faces the challenge of developing strategies to cure HIV-1. One of these pursued strategies is the development of immunotherapeutic vaccines based on dendritic cells (DCs), pulsed with the virus, that aim to boost HIV-1 specific immune response. We aimed to review DCs-based therapeutic vaccines reports and critically assess evidence to gain insights for the improvement of these strategies. We performed a systematic review, followed by meta-analysis and meta-regression, of clinical trial reports. Twelve studies were selected for meta-analysis. The experimental vaccines had low efficiency, with an overall success rate around 38% (95% confidence interval = 26.7%–51.3%). Protocols differed according to antigen choice, DC culture method, and doses, although multivariate analysis did not show an influence of any of them on overall success rate. The DC-based vaccines elicited at least some immunogenicity, that was sometimes associated with plasmatic viral load transient control. The protocols included both naïve and antiretroviral therapy (ART)-experienced individuals, and used different criteria for assessing vaccine efficacy. Although the vaccines did not work as expected, they are proof of concept that immune responses can be boosted against HIV-1. Protocol standardization and use of auxiliary approaches, such as latent HIV-1 reservoir activation and patient genomics are paramount for fine-tuning future HIV-1 cure strategies.
The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented public health crisis in the 21st century. As the pandemic evolves, the emergence of SARS-CoV-2 has been characterized by the emergence of new variants of concern (VOCs), which resulted in a catastrophic impact on SARS-CoV-2 infection. In light of this, research groups around the world are unraveling key aspects of the associated illness, coronavirus disease 2019 (COVID-19). A cumulative body of data has indicated that the SARS-CoV-2 viral load may be a determinant of the COVID-19 severity. Here we summarize the main characteristics of the emerging variants of SARS-CoV-2, discussing their impact on viral transmissibility, viral load, disease severity, vaccine breakthrough, and lethality among COVID-19 patients. We also provide a rundown of the rapidly expanding scientific evidence from clinical studies and animal models that indicate how viral load could be linked to COVID-19 prognosis and vaccine efficacy among vaccinated individuals, highlighting the differences compared to unvaccinated individuals.
Tuberculosis (TB) caused by Mycobacterium tuberculosis, is major cause of morbidity and mortality worldwide. So far, many candidate genes have been investigated for their possible association with TB. Dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) and Liver/lymph node-specific intercellular adhesion molecule-grabbing non-integrin (L-SIGN), encoded by CD209 and CD209L genes respectively, are known for binding to M. tuberculosis on human dendritic cells and macrophages. We screened 4 single nucleotide polymorphisms (SNPs) in the promoter region of CD209, namely -939G>A (rs735240), -871A>G (rs735239), -336A>G (rs4804803) and -139G>A (rs2287886) and tandem repeat polymorphisms in exon 4 of CD209 and CD209L genes looking for association with TB in a Northeastern Brazilian population (295 subjects, 131 TB patients and 164 healthy controls). The -139G>A and -939G>A SNPs were associated with susceptibility to TB, and in particular with pulmonary and extra-pulmonary forms respectively. The -871A>G and -336A>G SNPs were associated, the first with protection to both pulmonary and extra-pulmonary TB, the latter only with the pulmonary form. An association between GGAG haplotype and protection to TB infection was also found. Also tandem repeat polymorphism in CD209L exon 4 was associated with TB infection. This study provides evidence of an association between CD209 and CD209L polymorphisms and TB development in a Brazilian population, suggesting that variations in these genes may influence the protection and susceptibility to infection caused by M. tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.