The transition of ductal carcinoma in situ (DCIS) to invasive breast carcinoma requires tumor cells to cross the basement membrane (BM). However, mechanisms underlying BM transmigration are poorly understood. Here, we report that expression of membrane-type 1 (MT1)-matrix metalloproteinase (MMP), a key component of the BM invasion program, increases during breast cancer progression at the in situ to invasive breast carcinoma transition. In the intraductal xenograft model, MT1-MMP is required for BM transmigration of MCF10DCIS.com breast adenocarcinoma cells and is overexpressed in cell clusters overlying focal BM disruptions and at the invasive tumor front. Mirrored upregulation of p63 and MT1-MMP is observed at the edge of MCF10DCIS.com xenograft tumors and p63 is required for induction of MT1-MMP-dependent invasive program in response to microenvironmental signals. Immunohistochemistry and analysis of public database reveal that p63 and MT1-MMP are upregulated in human basal-like breast tumors suggesting that p63/MT1-MMP axis contributes to progression of basal-like breast cancers with elevated p63 and MT1-MMP levels.
Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome, including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chromosome as an epigenetic biomarker at the molecular and cytological levels in cancer.
MPL (or thrombopoietin receptor, TPO-R) 515 mutations have recently been described in 5-10% of primitive myelofibrosis (PMF) cases as decisive oncogenic events capable of triggering the disease. Here we report additional mutations located in exon 10 of MPL in PMF patients. We investigated whether these new mutations also lead to cell transformation. MPL exon 10 was systematically sequenced in 100 PMF patients. Seven different mutations were found in eight patients. We introduced each MPL mutant in Ba/F3 cells to determine whether they correspond to gain-of-function mutations. Only MPL W515 mutations induced (1) Ba/F3 proliferation independently of growth factors, (2) tumorigenesis in nude mice, (3) spontaneous activation of JAK/STAT, RAS/MAPK and PI3K transduction pathways and (4) increased S phase of cell cycle. Similar to all other myeloproliferative disorder oncogenic events identified to date, these results demonstrate that only the detected MPL W515 mutations trigger spontaneous MPL activation leading to a G 1 /S transition activation. The other mutations are devoid of significant transforming activity but may synergize with JAK2 V617F or other not yet characterized molecular events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.