Abstract. Natural and human-ignited fires affect all major biomes, altering ecosystem structure, biogeochemical cycles and atmospheric composition. Satellite observations provide global data on spatiotemporal patterns of biomass burning and evidence for the rapid changes in global fire activity in response to land management and climate. Satellite imagery also provides detailed information on the daily or sub-daily position of fires that can be used to understand the dynamics of individual fires. The Global Fire Atlas is a new global dataset that tracks the dynamics of individual fires to determine the timing and location of ignitions, fire size and duration, and daily expansion, fire line length, speed, and direction of spread. Here, we present the underlying methodology and Global Fire Atlas results for 2003–2016 derived from daily moderate-resolution (500 m) Collection 6 MCD64A1 burned-area data. The algorithm identified 13.3 million individual fires over the study period, and estimated fire perimeters were in good agreement with independent data for the continental United States. A small number of large fires dominated sparsely populated arid and boreal ecosystems, while burned area in agricultural and other human-dominated landscapes was driven by high ignition densities that resulted in numerous smaller fires. Long-duration fires in boreal regions and natural landscapes in the humid tropics suggest that fire season length exerts a strong control on fire size and total burned area in these areas. In arid ecosystems with low fuel densities, high fire spread rates resulted in large, short-duration fires that quickly consumed available fuels. Importantly, multiday fires contributed the majority of burned area in all biomass burning regions. A first analysis of the largest, longest and fastest fires that occurred around the world revealed coherent regional patterns of extreme fires driven by large-scale climate forcing. Global Fire Atlas data are publicly available through http://www.globalfiredata.org (last access: 9 August 2018) and https://doi.org/10.3334/ORNLDAAC/1642, and individual fire information and summary data products provide new information for benchmarking fire models within ecosystem and Earth system models, understanding vegetation–fire feedbacks, improving global emissions estimates, and characterizing the changing role of fire in the Earth system.
[1] We use a plume height climatology derived from space-based Multiangle Imaging Spectroradiometer (MISR) observations to evaluate the performance of a widely used plume-rise model. We initialize the model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to constrain, and we test the model with four estimates each of active fire area and total heat flux, obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies available for each MISR plume and other empirical data. We demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux) and atmospheric stability structure influence plume rise, although entrainment and possibly other less well constrained factors are also likely to be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the boundary layer, consistent with earlier results. However, over the diversity of conditions studied, the model simulations generally underestimate the plume height dynamic range observed by MISR and do not reliably identify plumes injected into the free troposphere, key information needed for atmospheric models to simulate smoke dispersion. We conclude that embedding in large-scale atmospheric studies an advanced plume-rise model using currently available fire constraints remains a difficult proposition, and we propose a simplified model that crudely constrains plume injection height based on two main physical factors for which some observational constraints often exist. Field experiments aimed at directly measuring fire and smoke plume properties in detail are likely to produce the next major advances in plume-rise modeling.
Abstract. Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy released by the burning vegetation. The column of hot smoke rapidly entrains cooler ambient air, forming a rising plume within which the fire emissions are transported. The characteristics of this plume, and in particular the height to which it rises before releasing the majority of the smoke burden into the wider atmosphere, are important in terms of how the fire emissions are ultimately transported, since for example winds at different altitudes may be quite different. This difference in atmospheric transport then may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents, with for example very high plume injection heights being associated with extreme long-range atmospheric transport. Here we review how such landscape-scale fire smoke plume injection heights are represented in largerscale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system. In particular we detail (i) satellite Earth observation data sets capable of being used to remotely assess wildfire plume height distributions and (ii) the driving characteristics of the causal fires. We also discuss both the physical mechanisms and dynamics taking place in fire plumes and investigate the efficiency and limitations of currently available injection height parameterizations. Finally, we conclude by suggesting some future parameterization developments and ideas on Earth observation data selection that may be relevant to the instigation of enhanced methodologies aimed at injection height representation.
[1] A method is presented to parameterize the impact of the nonlinear chemical reactions occurring in the plume generated by concentrated NO x sources into large-scale models. The resulting plume parameterization is implemented into global models and used to evaluate the impact of aircraft emissions on the atmospheric chemistry. Compared to previous approaches that rely on corrected emissions or corrective factors to account for the nonlinear chemical effects, the present parameterization is based on the representation of the plume effects via a fuel tracer and a characteristic lifetime during which the nonlinear interactions between species are important and operate via rates of conversion for the NO x species and an effective reaction rates for O 3 . The implementation of this parameterization insures mass conservation and allows the transport of emissions at high concentrations in plume form by the model dynamics. Results from the model simulations of the impact on atmospheric ozone of aircraft NO x emissions are in rather good agreement with previous work. It is found that ozone production is decreased by 10 to 25% in the Northern Hemisphere with the largest effects in the north Atlantic flight corridor when the plume effects on the global-scale chemistry are taken into account. These figures are consistent with evaluations made with corrected emissions, but regional differences are noticeable owing to the possibility offered by this parameterization to transport emitted species in plume form prior to their dilution at large scale. This method could be further improved to make the parameters used by the parameterization function of the local temperature, humidity and turbulence properties diagnosed by the large-scale model. Further extensions of the method can also be considered to account for multistep dilution regimes during the plume dissipation. Furthermore, the present parameterization can be adapted to other types of point-source NO x emissions that have to be introduced in large-scale models, such as ship exhausts, provided that the plume life cycle, the type of emissions, and the major reactions involved in the nonlinear chemical systems can be determined with sufficient accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.