Investigations of vegetation stress along non-paved roads treated with a range of magnesium chloride (MgCl 2 ) application rates utilized 60 roadside and 79 drainage plots on 15 and 18 roads, respectively. Evaluations were completed of foliar damage, plant health, biotic and abiotic damage incidence and severity, soil and foliar chemistry and other common site and stand characteristics of Pinus contorta, Populus tremuloides, Picea engelmannii, Abies lasiocarpa, and lower elevation plots dominated by shrubs and grasses. High concentrations of soil magnesium and chloride (400-500 ppm), high foliar chloride (2,000-16,000 ppm depending on species) and high incidence of foliar damage were measured in roadside plots along straight road segments in the first 3 to 6.1 m adjacent to treated roads. In drainage plots, where water is channeled off roads, high concentrations of both magnesium and chloride ions and associated foliar damage were measured between 3 and 98 m from the road. High incidence of foliar damage and elevated ion concentrations were not apparent in control plots along non-treated roads. Lodgepole pine appeared to be the most sensitive species, while aspen accumulated the most chloride and exhibited the least amount of damage. Foliar chloride concentrations strongly correlated with percent foliar damage for all species (r=0.53 to 0.74, p< 0.0001) while the incidence of biotic damages did not correlate well. Positive relationships between foliar chloride and magnesium chloride application rates were strong and can be used to predict foliar concentrations and subsequent damage to roadside trees.
The smaller European elm bark beetle, Scolytus multistriatus, has been the primary vector of the Dutch elm disease fungus, Ophiostoma novo-ulmi, in elm trees in Colorado since 1948. An exotic from Asia, the banded elm bark beetle, Scolytus schevyrewi, was found in Siberian elm, Ulmus pumila, in Colorado in April of 2003; this was the first report of S. schevyrewi in North America. S. schevyrewi is now found throughout much of Colorado and in at least 21 other states. The similarities in breeding and feeding habits between S. schevyrewi and S. multistriatus have raised concerns about the ability of S. schevyrewi to serve as a vector for O. novo-ulmi. The objective of this preliminary study was to determine if O. novo-ulmi could be isolated from adult S. schevyrewi emerging from diseased elm trees. S. schevyrewi and S. multistriatus were allowed to infest diseased stem segments of American elm, Ulmus americana. The infested stem segments were caged and isolations were made from the adult brood that emerged. O. novo-ulmi was isolated from most of the adults of both beetle species, showing that S. schevyrewi could acquire the pathogen as effectively as S. multistriatus. Future studies are needed to determine if S. schevyrewi can effectively transmit the pathogen to healthy trees.
A multi-faceted research project was conducted on a modular green roof in semi-arid, high elevation Denver, Colorado U.S.A. A photovoltaic (PV) array ran along the southeastern edge of the research area and visibly influenced the plant growth, cover and biomass. Plants grown near the PV prospered compared to plants in the exposed area. Average summer temperatures in the modules under the PV array were cooler with less temperature variation compared to the modules located in the exposed areas of the green roof. Shading structures integrated on green roofs may produce effects that resemble natural ecotones tending towards greater plant coverage and biomass, and therefore greater green roof resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.